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ANALYSIS OF ONE-DIMENSIONAL INELASTIC DEFORMATION OF THE 

CLAD LAYER BY ROLLING FOR RESTORATION OF FLAT SURFACE PARTS 

The hardening-finishing treatment of parts surface with rolling by steel cylindrical rollers produces low roughness, 

reduced residual compression stresses, and fine-grained structure due to plastic deformations. The deformation  

of metals during machining at high temperatures is characterized by a significant influence of strain rates on 

stresses. This necessitates the calculation of stresses and strains based on the equation of state of rheonic bodies. 

This study aims to determine the components of stresses and force factors of the technological process of finishing 

and strengthening machining of the surface of parts by deriving the analytical solutions to calculate the stress-

strain state within the deformation zone based on creep theory.  In this problem, general formulas are obtained for 

calculating the stress-strain state, pressure and friction forces on the contact surface, as well as forces and moments 

acting on the roller. Numerical analysis using Mathcad explores the understanding of the stress-strain state in the 

deformation zone on the force factors of the technological process. The obtained results are beneficial for 

establishing the mode of thermomechanical processing and selecting appropriate technological equipment for 

restoring flat surface parts. 

1. INTRODUCTION 

One effective way of hardening the surface layer of the part, increasing its wear 

resistance, and achieving high accuracy is the process of surface deformation by the rolling 

method, which consists of changing its geometric, physical, and mechanical parameters  

[1–2]. Several studies have been carried out to improve the quality of the working surfaces  

of parts instead of using the traditional thermal methods. The running-in of working surfaces 

of parts by surface-plastic deformation provides low roughness by deposition of metal in 

thickness in the seam area to create plastic tensile strains in the longitudinal and transverse 

directions and residual compressive stresses in the surface layers with the formation of fine 
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grain structure [3–5]. This process is realized due to metal deposition by cylindrical rollers 

along the thickness in the weld zone to induce plastic elongation deformations. 

Tonysheva and others [6] determined the parameters characterizing the technological 

process of rolling, including the rolling force on the roller, the radius and width of the roller, 

the thickness of the metal in the rolling zone, and the parameters of the material state. They 

found that residual deformations are eliminated if the plastic elongation deformations are 

created by rolling in the layer and adjacent to the seam. In this case, the longitudinal residual 

stresses are close to zero. Together with the elimination of longitudinal residual deformations, 

the running-in process eliminates the displacement of the structure resulting from the loss  

of stability due to the action of longitudinal residual stresses. The proposed impact parameters 

are calculated by approximate formulas according to the scheme of uniaxial stress state [7]. 

At the same time, the condition of settling the running-in zone in the form of specified 

deformations along the thickness of the element is accepted. 

For an objective analysis of the effect of deposition through the thickness of the heated 

material, and assessment of changes in residual stresses and deformations, it is required to 

perform a study of the stress-strain state of the layered metal, based on which the deforming 

force and total power are additionally calculated [8]. As noted, as the temperature increases, 

it is reasonable to calculate technological processes of metal processing based on the 

equations of state of the simplest creep theories. The most general in this respect is the theory 

of hardening. In the considered case, in contrast to the usual rolling process between rotating 

drive rolls, the deforming roller makes plane-parallel movement, and there are different 

friction conditions on the contact surfaces. In the works of Sergeev, Karamyshev and others, 

experimental data showed that the deformation of metals during processing at high tempera-

tures is characterized by a significant influence of strain rates on stresses [9, 10]. Therefore, 

it is necessary to calculate stresses and strains based on the equation of state of rheonic bodies. 

The creep theory establishes the relation between stresses, strains, rates of their change, 

and time in the simplest case of uniaxial stretching. It presents the possibility of describing 

the deformation of a material in the general case of time-varying stresses and strains based on 

the simplest tests of the material.  It provides the determination of the law of strain variation 

by a given law of stress variation and vice versa. In a particular case, it should allow the 

construction of relaxation curves from a series of creep curves. The simplest but not the best 

method of verifying the creep theory is to compare the results of the experimental study  

of relaxation at constant strain with the data obtained from the creep theory. 

2. METHODOLOGY 

Considering the simplest creep theories to describe the creep processes of metals, 

applying these to the problems of metal processing allows us to obtain reliable results with 

less effort and time. It should be noted that the simplest theories consider the main variables: 

strain rate, stress, and time. After selecting the variables, it is necessary to link them with  

a particular analytical relationship that is adequately consistent with the data of experimental 

experiments. Creep theory construction is usually performed for the simplest case of uniaxial 

stretching and the general case of nonuniaxial stress state [8–10]. 
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The stress, creep strain and creep strain rate are taken as the main variables in the theory 

of hardening. It is assumed that at a given temperature there is a certain dependence between 

these variables: 

Φ3(𝜀𝑐 , 𝜎, 𝜉𝑐) = 0
 (1) 

Usually this equation is taken in the form 

𝜉𝑐𝜀𝑐
𝛽

= 𝑓(𝜎)
 (2) 

Since: 

𝑓(𝜎) = 𝛼𝜎𝜈
 

(3) 

Equation (2) will be written as follows: 

𝜉𝑐𝜀𝑐
𝛽

= 𝛼𝜎𝜈
 

(4) 

where: α, β, ν – temperature-dependent material constants.  

After integration of equation (4) at t = 0, ξc = 0 we find  

𝜀𝑐 = [(𝛽 + 1)𝛼𝜎𝜈𝑡]
1

𝛽+1
 

(5) 

Then the equation describing the creep curves according to the theory of hardening has 

the form: 

𝜀 = 𝜀𝑙 + 𝜀𝑐 =
𝜎

𝐸
+ [(𝛽 + 1)𝛼𝜎𝜈𝑡]

1
𝛽+1

 
(6) 

It follows from the equation that the creep curves in this case are geometrically similar. 

From equation (6) by integration at t = 0, σ = σ (0) we obtain: 

𝑡 =
1

𝛼𝐸𝛽+1
∫

[𝜎(0) − 𝜎]𝛽

𝜎𝜈
𝑑𝜎

𝜎(0)

𝜎

           
 

(7) 

Equation 7 describes the family of relaxation curves in implicit form. For arbitrary 

values of ν and β, the integral (7) is determined numerically. 

For an uniaxial stress state, the equation (4) has the following form 

𝜎𝑒 = 𝑎𝜉𝑒
𝑚𝜅𝑛

 (8) 

where: 𝜅 = ∫ 𝜉𝑒 𝑑𝑡
 
- Udquist parameter, e - equivalent stress, e  - equivalent strain rate. 

 As a special case, the nonlinear viscous equation, widely used in the analysis of flow in 

superplasticity state, follows from the hardening theory: 

𝜉𝑒 = 𝛫𝜎𝑒
𝜈
 

(9) 

where: К, v – material constants at a certain temperature  

For uniaxial stress state equation (9) has the form: 

𝜉 = 𝛫𝜎𝜈

 
(10) 
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From equation (8), as a special case (at m = 0), we obtain the equation used to study  

the deformation of purely plastic materials, including perfectly rigid plastic material (at 𝑚 =
0, 𝑛 = 0). 

For numerical calculations of the stress-strain state of the layer in the deformation zone, 

it is necessary to know the values of the material constants at the temperature of shape change. 

The material constants (parameters of the equation of state) are determined by processing 

creep curves. Equation of state (4) describes creep curves with an explicit hardening section 

(first section) and equation of state (10) describes creep curves with no hardening section and 

an explicit steady-state creep section (second section). 

Methods for determining the parameters of the equation of state are given in [11–14]. 

The degree of coincidence of experimental and theoretical creep curves depends on the 

accuracy of determining the parameters of the equation of state (material constants). Relia-

bility of calculation of stress-strain state and force parameters of technological process 

depends on the accuracy of material constants. 

3. RESULTS AND DISCUSSIONS 

Consider the deformation of the material under the action of a rigid cylindrical roller, 

which performs a plane-parallel motion in the plane of the drawing (Fig. 1). The deformable 

material is located on a rigid surface. Denote the speed of movement of the center of the roller 

by 𝑉0 and the angular velocity of rotation 𝜔; it is believed that they are constant values in 

time. The movement velocity components of an arbitrary point on the contact surface of the 

material with the roller in the deformation focus are illustrated in Fig. 1. 

 

Fig. 1. Cylindrical roller running-in scheme 

where: 𝑅- roller radius, 𝛥ℎ - changing the layer thickness, ℎ0- thickness of the rolled layer, 

𝛼0 − maximum contact angle, 𝛼 - angular coordinate of the point m, 𝜔 - angular rotation 
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speed of the roller, 𝑉0̅ − velocity vector of movement the center of the roller, 𝑉𝑚
̅̅ ̅- the velocity 

vector of the point 𝑚 on the contact surface, 𝑉̄𝑚0- the vector of the rotation speed of the point 

𝑚 relative to the center of the roller. 

𝜐𝑦 = 𝜐0 − 𝜔𝑅 𝑐𝑜𝑠 𝛼
 

(11a) 

𝜐𝑧 = −𝜔𝑅 𝑠𝑖𝑛 𝛼 (11b) 

 

Fig. 2. Derivation of the equilibrium equation of a finite element 

Suppose that the stress-strain state of the material changes only along the y coordinate. 

Then, from the equilibrium condition of a finite element of the body, we have the following 

equations (Fig. 2): 

𝑑𝜎𝑦

𝑑𝑦
+

𝜎𝑦 + 𝑝

ℎ
𝑡𝑔𝛼 +

𝑞 − 𝑞1

ℎ
= 0

 (12) 

𝜎𝑧 = 𝑝 − 𝑞𝑡𝑔𝛼 (13) 

where 𝜎𝑦 , 𝜎𝑧 , 𝑝, 𝑞 are stress components, the pressure and intensity of the friction forces, 

respectively, on the contact surface of the material with the roller; 𝑞1 is the intensity of the 

friction forces of a material with a rigid surface. 

In technological problems of this kind in a one-dimensional formulation, the equivalent 

stress 𝜎𝑒 is approximately calculated as [6]: 

𝜎𝑒 = 𝜎𝑦 − 𝜎𝑧 (14) 

It is obvious from Fig. 2 that ℎ = ℎ0 + 𝑅(1 − 𝑐𝑜𝑠 𝛼), 𝑑𝑦 = 𝑅 𝑐𝑜𝑠 𝛼 𝑑𝛼. Considering 

the relations in equations (12)-(14), after simple transformations, an ordinary differential 

equation is obtained: 

𝑑𝜎𝑦

𝑑𝛼
+ 𝜓1(𝛼)𝜎𝑦 = 𝜓2(𝛼)

 
(15) 

R
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dy
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The following section analyses the stress-strain state of the layer and force parameters 

of the technological process. To integrate equation (15), we have the boundary condition 𝛼 =
0,  𝜎𝑦 = 0. Then, the solution of the equation will be written as follows: 

𝜎𝑦 = 𝑒𝑥𝑝 (− ∫ 𝜓1𝑑𝛼
𝛼

0

) ∫ 𝜓2 𝑒𝑥𝑝 (∫ 𝜓1𝑑𝛼
𝛼

0

) 𝑑𝛼
𝛼

0
 

(16) 

For small contact angles, the solution of the differential equation (15) has the form: 

𝜎𝑦 =
1

𝜆
𝑒𝑥𝑝 (−

𝜇𝛼

𝜆
) [(1 + 𝜇2) ∫ 𝜎𝑒 𝑒𝑥𝑝 (

𝜇𝛼

𝜆
) 𝛼𝑑𝛼

𝛼

0

+ (
𝜒

2
+ 𝜇) ∫ 𝜎𝑒 𝑒𝑥𝑝 (

𝜇𝛼

𝜆
) 𝑑𝛼

𝛼

0

]
 (17) 

where 𝜆 = ℎ0 𝑅⁄  is the length carrying ratio. 

As can be seen from the solutions obtained, in order to calculate the stresses, it is 

necessary to describe the state of the deformable material. Let's take the equation of state 

according to the theory of hardening in equation (8). 

The rate of deformation in the longitudinal direction, taking into account the equations 

(11a,b), is calculated as: 

𝜉𝑦 =
𝑑𝜐𝑦

𝑑𝑦
= 𝜔𝑅 𝑠𝑖𝑛 𝛼

𝑑𝛼

𝑑𝑦 (18) 

In the considered case of a plane deformed state [7, 8], the equivalent rate of 

deformations 𝜉𝑒 = 2𝜉𝑦 √3⁄ . Following Fig. 2, if we take into account that 𝑑𝛼 𝑑𝑦⁄ =

𝑑𝑙 (𝑅𝑑𝑦) = 1 (𝑅 𝑐𝑜𝑠 𝛼)⁄⁄ , then for the strain rate and the equivalent strain rate we have: 

𝜉𝑦 = 𝜔𝑡𝑔𝛼
 

(19a) 

𝜉𝑒 = 2𝜔𝑡𝑔𝛼 √3⁄  (19b) 

The Udquist parameter, taking into account the second equality (19) and the ratio 𝑑𝑡 =
𝑑𝛼 𝜔⁄ , will take the form: 

𝜅 = −
2

√3
𝑙𝑛|𝑐𝑜𝑠 𝛼|

 (20) 

If we take into account the formulas for the equivalent strain and the Udquist parameter 

in the equation (18), then to calculate the equivalent stress we obtain: 

𝜎𝑒 = 𝑎 (
2

√3
)

𝑚+𝑛

𝜔𝑚𝑡𝑔𝑚𝛼(− 𝑙𝑛|𝑐𝑜𝑠 𝛼|)𝑛
 

(21) 

From equation (13), taking into account equations (14) and (2), we determine the 

pressure distribution on the contact surface of the material with the roller: 

𝑝 =
𝜎𝑦 − 𝜎𝑒

1 − 𝜇𝑡𝑔𝛼 (22) 
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Taking into account the first equation (19), the deformation in the longitudinal direction 

is equal to: 

𝜀𝑦 = ∫ 𝜉𝑦𝑑𝑡
𝑡

0

+ 𝜀𝑦
0 = − 𝑙𝑛|𝑐𝑜𝑠 𝛼| + 𝜀𝑦

0
 

(23) 

where 𝜀𝑦
0 is the residual deformation after surfacing. 

In order to completely eliminate the residual longitudinal deformations, it is necessary 

to fulfill the condition 𝑙𝑛|𝑐𝑜𝑠 𝛼| = 𝜀𝑦
0. Appropriate contact angle: 

𝛼0 = 𝑎𝑟𝑐𝑐𝑜𝑠[𝑒𝑥𝑝(𝜀𝑦
0)]

 (24) 

On the other hand, the maximum contact angle (Fig. 1): 

𝛼0 = 𝑎𝑟𝑐𝑠𝑖𝑛 [2√𝛥ℎ/(2𝑅)].
 (25) 

where 𝛥ℎ is the reduced thickness of the deposited layer. 

Comparing equations (24) and (25), we find: 

𝛥ℎ = 𝑅 [1 − 𝑒𝑥𝑝(2𝜀𝑦
0)] 2⁄

 
(26) 

If the magnitude of the residual longitudinal welding deformation is known, then 

formulas (24) and (26) determine the maximum contact angle of the material with the roller 

and the deformation 𝜀𝑧 = 𝛥ℎ/ℎ by the thickness of the element in the rolling zone of the weld 

seam [15, 16]. After determining the contact pressure and the intensity of the friction forces, 

the force and moment acting on the roller can be calculated. 

The moment of forces per unit length in the direction perpendicular to the drawing, 

assuming that the moment of contact pressure forces relative to the center of the roller can be 

neglected, is equal to: 

𝑀 = 𝜇𝑅2 ∫ 𝑝𝑑𝛼
𝛼0

0
 

(27) 

Projection on the vertical and horizontal axis of the force per unit length in the direction 

perpendicular to the drawing, we obtained: 

𝑃𝑧 = 𝑅 ∫ (𝑝 𝑐𝑜𝑠 𝛼 − 𝑞 𝑠𝑖𝑛 𝛼)𝑑𝛼
𝛼0

0
 (28) 

𝑃𝑦 = 𝑅 ∫ (𝑝 𝑠𝑖𝑛 𝛼 + 𝑞 𝑐𝑜𝑠 𝛼)𝑑𝛼
𝛼0

0

 (29) 

In the formulas obtained above, the integrals are calculated numerically. To do this, we 

introduce dimensionless quantities: 

𝜎̄𝑒 =
𝜎𝑒

𝑎𝜔𝑚
, 𝜎̄𝑦,𝑧 =

𝜎𝑦,𝑧

𝑎𝜔𝑚
, 𝑝̅ =

𝑝

𝑎𝜔𝑚
, 𝑀̅ =

𝑀

𝑎𝜔𝑚𝑅2
, 𝑃̄𝑦,𝑧 =

𝑃𝑦,𝑧

𝑎𝜔𝑚𝑅
 𝑞̅ =

𝑞

𝑎𝜔𝑚
, 
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𝑣̄𝑦,𝑧 =
𝑣𝑦,𝑧

𝜔𝑅
, 𝜓2

̅̅̅̅ (𝛼) = 𝜓2(𝛼)/(𝑎𝜔𝑚), 
𝜉𝑒̅,𝑦 =

𝜉𝑒,𝑦

𝜔
, ∆ℎ̅̅̅̅ =

𝛥ℎ

𝑅
, 𝜆 =

ℎ0

𝑅
 

The above basic equations in dimensionless quantities will take the form: 

𝜓̄2(𝛼) =
1

𝜆 + 1 − 𝑐𝑜𝑠 𝛼
(

𝑠𝑖𝑛 𝛼 + 𝜇 𝑐𝑜𝑠 𝛼

1 − 𝜇𝑡𝑔𝛼
+

𝜒

2
𝑐𝑜𝑠 𝛼) 𝜎̄𝑒 

(30a) 

𝜎̄𝑦 = 𝑒𝑥𝑝 (− ∫ 𝜓1𝑑𝛼
𝛼

0

) ∫ 𝜓̄2 𝑒𝑥𝑝 (∫ 𝜓1𝑑𝛼
𝛼

0

) 𝑑𝛼
𝛼

0

 
(30b) 

𝜎̄𝑦 =
1

𝜆
𝑒𝑥𝑝 (−

𝜇𝛼

𝜆
) [(1 + 𝜇2) ∫ 𝜎̄𝑒 𝑒𝑥𝑝 (

𝜇𝛼

𝜆
) 𝛼𝑑𝛼

𝛼

0

+ (
𝜒

2
+ 𝜇) ∫ 𝜎̄𝑒 𝑒𝑥𝑝 (

𝜇𝛼

𝜆
) 𝑑𝛼

𝛼

0

] 
(30c) 

𝜉𝑦 = 𝑡𝑔𝛼 (30d) 

𝜉𝑒 = 2𝑡𝑔𝛼 √3⁄  (30e) 

𝑝̄ =
𝜎̄𝑦 − 𝜎̄𝑒

1 − 𝜇𝑡𝑔𝛼
 (30f) 

𝜎̄𝑒 = (
2

√3
)

𝑚+𝑛

𝑡𝑔𝑚𝛼(− 𝑙𝑛|𝑐𝑜𝑠 𝛼|)𝑛 (30g) 

𝛥ℎ̄ = [1 − 𝑒𝑥𝑝( 2𝜀𝑦
0)]/2 (30h) 

𝛼0 = 𝑎𝑟𝑐𝑠𝑖𝑛 [2√𝛥ℎ̄/2] (30i) 

𝑀̄ = 𝜇 ∫ 𝑝̄𝑑𝛼
𝛼0

0

 (30j) 

𝑃̄𝑧 = ∫ (𝑝̄ 𝑐𝑜𝑠 𝛼 − 𝑞̄ 𝑠𝑖𝑛 𝛼)𝑑𝛼
𝛼0

0

 (30k) 

𝑃̄𝑦 = ∫ (𝑝̄ 𝑠𝑖𝑛 𝛼 + 𝑞̄ 𝑐𝑜𝑠 𝛼)𝑑𝛼
𝛼0

0

 (30l) 

Thus, in one-dimensional formulation, relatively general formulas for calculating the 

stress-strain state, pressure and friction forces on the contact surface, forces and moments 

acting on the roller were obtained. In order to perform the numerical calculation, a program 

in Mathcad system was compiled. The material deformation was calculated for the following 

values of constants: 𝑚 = 0.147; 𝑛 = 0.157; 𝜇 = 0.3; 𝜒 = 1; 𝜆 = 0.1. The value of residual 

deformation after cladding was taken 𝜀𝑦
0 = −8.7 × 10−3; and 𝛥ℎ/𝑅 = 8.7 × 10−3 [17–20]. 

Figure 3 shows the distributions of dimensionless values of stress components (𝜎𝑦 , 𝜎𝑧) 

and equivalent stress (𝜎𝑒) in the deformation center. As can be seen from Fig. 3, the stresses 

are positive in the axial direction, so the residual tensile stresses after welding, will increase 

when the weld is run-in. 
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Fig. 3. Distribution of stress components and equivalent stress in the deformation center (𝜇 = 0.3;  𝜆 = 0.1) 

 

Fig. 4. Variation of residual strain in the axial direction of the layer 

 

Fig. 5. Distribution of contact pressure on the roller 
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Figure 4 shows the variation of residual strain (𝜀𝑦) in the longitudinal direction. In this 

paper, the stress-strain state is calculated on the basis of a nonlinear-viscous body model 

(model of plastic material with nonlinear hardening) describing creep curves, which are used 

to calculate the processes of shape change under conditions of super-plasticity. Figure 5 

illustrates the distribution of dimensionless value of contact pressure (𝑝). The values of force 

factors acting on the roller are equal to 𝑃̄𝑦 = 4.1 × 10−3, 𝑃̄𝑧 = 0.011, 𝑀̄ = 3.4 × 10−3. 

 

Fig. 6. Forces and moment acting on the roller 

Figure 6 shows the graph of the change of dimensionless values of forces and the 

moment 𝑀 depending on the contact angle. It can be established that there is an increase in 

the resistance from the material side to the roller at the beginning of the contact at its minimum 

angle and a significant decrease in the resistance at the end of the contact section.  

The dimensionless values of the moment and contact force change as the contact angle of the 

material with the roller increases. According to these graphs, it is possible to establish  

the values of force and moment of deformation and determine the required power of the 

technological equipment. 

Calculations show that it is possible to select the friction coefficient 𝜇 and the length 

carrying ratio 𝜆 in such a way that the stress in the y-axis direction (𝜎𝑦) can be significantly 

reduced. At certain values of  , the friction force q changes direction on a small section  

of the contact surface. The stress-strain state was calculated based on a nonlinear viscous body 

model. The nonlinear-viscous body model describes creep curves in the absence of the first 

section, i.e., when strain hardening is insignificant. At high temperatures, for all stresses and 

strain rates, there is usually no damped section in the creep curves. In the presence of linear 

initial sections in equation (2) it is necessary to put 𝛽 = 0 and the creep curves will be 

described by the nonlinear-viscous body model, which is widely used for calculations of the 

processes of shape change under super-plasticity conditions. 
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3.1. ANALYSIS THE EFFECT OF LENGTH CARRYING RATIO 

Figure 7 shows the dimensionless stress, contact pressure, force, and moments versus 

length carrying ratio (𝜆) diagrams. As 𝜆 increases, the longitudinal and transverse stresses 

decrease. In contrast, the equivalent stress does not change (Fig. 7a). On the other hand, the 

tendency for the contact pressure and the longitudinal, transverse forces and moment all 

increase when 𝜆 increases, as shown in Fig. 7b and Fig. 7c. 

 
(a)          (b) 

 

(c) 

Fig. 7. The effect of dimensions ratio (𝜆) 

It can be concluded that a decrease in the length carrying ratio (𝜆) leads to an increase 

in the roller radius and a change in the thickness of the surface layer. In general, this affects 

the recovery processes of the worn surface. The effect of 𝜆 on forces and torque indicates that 

using the bigger diameter roller can reduce the forces and torques and increase the efficiency 

of the restoration process. 
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3.2. ANALYSIS THE EFFECT OF FRICTION COEFFICIENT 

Figure 8 shows the diagrams of dimensionless stress, contact pressure, force, and 

moments dependence on the friction coefficient (𝜇). With increasing 𝜇, there is a gradual 

increase in longitudinal stress and a sharp increase in transverse stress, while the equivalent 

stress does not change (Fig. 8a). As the friction coefficient increases, the contact pressure and 

the transverse force decrease (Fig. 8b). However, the longitudinal force and moment are not 

heavily affected by the value of 𝜇 (Fig. 8c).  

 
 (a) (b) 

 
(c) 

Fig. 8. The effect of friction coefficient (𝜇): 𝑠𝑡𝑟𝑒𝑠𝑠 – 𝑎). , 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 – 𝑏), 𝑓𝑜𝑟𝑐𝑒 𝑎𝑛𝑑 𝑚𝑜𝑚𝑒𝑛𝑡 − 𝑐) 

It is observed that the change in the friction coefficient (𝜇) on the contact surface of the 

material with the roller also affects the change in the values of forces and moments. At certain 

values, the friction forces change direction over a small contact surface area. The contact 

pressure takes the maximum value at the point of the contact surface with angular coordinate 

𝛼 = 0.05 and then decreases. At values of 𝜆 = 0.5 and 𝜇 = 0.3, the normal stress in the run-

ning-in direction decreases significantly and equals zero. 
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3.3. ANALYSIS THE EFFECT OF PROCESSING MATERIAL 

Numerical calculations were carried out for the following values of material constants 

in the equation (3) (𝑚 = 0.149; 𝑛 = 0). Figure 9 shows the plots of stress components and 

equivalent stress in the deformation center when the different material is used. 

Figure 10 shows the graph of pressure change on the roller. Comparing this scenario 

with the result of the hardening theory calculation in Fig. 5, it can be seen that the pressure 

decreases sharply to zero at the end of the contact section. The maximum value is reached at 

a much smaller contact angle than it is according to the hardening theory. 

 

Fig. 9. Distribution of stress components and equivalent stress in the deformation center for nonlinear viscous material 

(𝑚 = 0.149; 𝑛 = 0) 

 

Fig. 10. Distribution of contact pressure on the roller for nonlinear viscous material (𝑚 = 0,149; 𝑛 = 0) 
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The main resistance from the side of the material to the roller comes at the beginning  

of contact, and then sharply decreases. A similar pattern is observed for the force parameters 

of the technological process, presented in Fig. 11, if we compare them with the results of the 

hardening theory calculation (Fig. 6). 
 

 

Fig. 11. Forces and moment acting on the roller for nonlinear viscous material (𝑚 = 0,149; 𝑛 = 0) 

4. CONCLUSIONS 

The paper calculates the stress-strain state based on a nonlinear viscous body model 

describing creep curves, which are used to calculate shape change processes under super-

plasticity conditions. In formulating the one-dimensional problem of inelastic deformation 

 of the clad layer during roller rolling, relatively general formulas for calculating the force 

parameters of the technological process were obtained. By calculations, using the application 

program in the mathematical editor Mathcad for numerical analysis of the nonlinear one-

dimensional problem, it is observed that (1) the stress-strain state in the deformation zone 

depends significantly on the thickness of the layer before deformation, the radius of the roller 

and the friction coefficient on the contact surface between the material and the roller, and (2) 

at their certain values, the friction forces change direction on a small section of the contact 

surface. The contact pressure takes the maximum value at the point of the contact surface with 

angular coordinate 𝛼 = 0,05 and then decreases. At values 𝜆 = 0.5 and 𝜇 = 0.3, the normal 

stress in the running-in direction decreases significantly and equals zero. The dimensionless 

values of the moment and contact force change as the contact angles of the material with  

the roller increase. The results of the research and analysis are significant for establishing  

the mode of thermomechanical treatment and the selection of technological equipment for  

the restoration of flat surfaces of parts by rolling. 
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