PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parameter estimation of photovoltaic module relied on golden jackal optimization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to the nonlinear current-voltage (I-V) relationship of the photovoltaic (PV) module, building a precise mathematical model of the PV module is necessary for evaluating and optimizing the PV systems. This paper proposes a method of building PV parameter estimation models based on golden jackal optimization (GJO). GJO is a recently developed algorithm inspired by the idea of the hunting behavior of golden jackals. The explored and exploited searching strategies of GJO are built based on searching for prey as well as harassing and grabbing prey of golden jackals. The performance of GJO is considered on the commercial KC200GT module under various levels of irradiance and temperature. Its performance is compared to well-known particle swarm optimization (PSO), recent Henry gas solubility optimization (HGSO) and some previous methods. The obtained results show that GJO can estimate unknown PV parameters with high precision. Furthermore, GJO can also provide better efficiency than PSO and HGSO in terms of statistical results over several runs. Thus, GJO can be a reliable algorithm for the PV parameter estimation problem under different environmental conditions.
Rocznik
Strony
987--1003
Opis fizyczny
Bibliogr. 38 poz., fig., tab.
Twórcy
  • Faculty of Electrical Engineering Technology Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao, Ward 4, Go Vap District, Ho Chi Minh City, Vietnam
Bibliografia
  • [1] Ibrahim I.A., Hossain M.J., Duck B.C., Nadarajah M., An improved wind driven optimization algorithm for parameters identification of a triple-diode photovoltaic cell model, Energy Conversion and Management, vol. 213, 112872 (2020), DOI: 10.1016/j.enconman.2020.112872.
  • [2] Chenouard R., El-Sehiemy R.A., An interval branch and bound global optimization algorithm for parameter estimation of three photovoltaic models, Energy Conversion and Management, vol. 205,112400 (2020), DOI: 10.1016/j.enconman.2019.112400.
  • [3] Kumar M., Kumar A., An efficient parameters extraction technique of photovoltaic models for performance assessment, Solar Energy, vol. 158, pp. 192–206 (2017), DOI: 10.1016/j.solener.2017.09.046
  • [4] Easwarakhanthan T., Bottin J., Bouhouch I., Boutrit C., Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers, International Journal of Solar Energy, vol. 4, no. 1, pp. 1–12 (1986), DOI: 10.1080/01425918608909835.
  • [5] Changmai P., Nayak S.K., Metya S.K., Estimation of PV module parameters from the manufacturer’s datasheet for MPP estimation, IET Renewable Power Generation, vol. 14, no. 11, pp. 1988–1996 (2020), DOI: 10.1049/iet-rpg.2019.1377.
  • [6] AlHajr M.F., El-Naggar K.M., AlRashidi M.R., Al-Othman A.K., Optimal extraction of solar cell parameters using pattern search, Renewable Energy, vol. 44, pp. 238–245 (2012), DOI: 10.1016/j.renene.2012.01.082.
  • [7] Venkateswari R., Rajasekar N., Review on parameter estimation techniques of solar photovoltaic systems, International Transactions on Electrical Energy Systems, vol. 31, no. 11, pp. 1–72 (2021), DOI: 10.1002/2050-7038.13113.
  • [8] Naeijian M., Rahimnejad A., Ebrahimi S.M., Pourmousa N., Gadsden S.A., Parameter estimation of PV solar cells and modules using Whippy Harris Hawks Optimization Algorithm, Energy Reports, vol. 7, pp. 4047–4063 (2021), DOI: 10.1016/j.egyr.2021.06.085.
  • [9] Rezaee Jordehi A., Enhanced leader particle swarm optimisation (ELPSO): An efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules, Solar Energy, vol. 159, pp. 78–87 (2018), DOI: 10.1016/j.solener.2017.10.063.
  • [10] Harrag A., Messalti S., Three, Five and Seven PV Model Parameters Extraction using PSO, Energy Procedia, vol. 119, pp. 767–774 (2017), DOI: 10.1016/j.egypro.2017.07.104.
  • [11] Zagrouba M., Sellami A., Bouaïcha M., Ksouri M., Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction, Solar Energy, vol. 84, no. 5, pp. 860–866 (2010), DOI: 10.1016/j.solener.2010.02.012.
  • [12] Ma J., Ting T.O., Man K.L., Zhang N., Guan S.U., Wong P.W.H., Parameter estimation of photovoltaic models via cuckoo search, Journal of Applied Mathematics, vol. 2013, pp. 10–12 (2013), DOI: 10.1155/2013/362619.
  • [13] Rawat N., Thakur P., Singh A.K., Bhatt A., Sangwan V., Manivannan A., A new grey wolf optimization-based parameter estimation technique of solar photovoltaic, Sustainable Energy Technologies and Assessments, vol. 57, 103240 (2023), DOI: 10.1016/j.seta.2023.103240.
  • [14] Eltamaly A.M., Musical chairs algorithm for parameters estimation of PV cells, Solar Energy, vol. 241, pp. 601–620 (2022), DOI: 10.1016/j.solener.2022.06.043.
  • [15] Mahmoud M.F., Mohamed A.T., Swief R.A., Said L.A., Radwan A.G., Arithmetic optimization approach for parameters identification of different PV diode models with FOPI-MPPT, Ain Shams Engineering Journal, vol. 13, no. 3, 101612 (2022), DOI: 10.1016/j.asej.2021.10.007.
  • [16] Kashefi H., Sadegheih A., Mostafaeipour A., Mohammadpour Omran M., Parameter identification of solar cells and fuel cell using improved social spider algorithm, COMPEL – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 40, no. 2, pp. 142–172 (2020), DOI: 10.1108/compel-12-2019-0495.
  • [17] Khelifa M.A., Lekouaghet B., Boukabou A., Symmetric chaotic gradient-based optimizer algorithm for efficient estimation of PV parameters, Optik, vol. 259, 168873 (2022), DOI: 10.1016/j.ijleo.2022. 168873.
  • [18] Rezk H., Arfaoui J., Gomaa M.R., Optimal parameter estimation of solar pv panel based on hybrid particle swarm and grey wolf optimization algorithms, International Journal of Interactive Multimedia and Artificial Intelligence, vol. 6, no. 6, pp. 145–155 (2021), DOI: 10.9781/ijimai.2020.12.001.
  • [19] Hashim F.A., Houssein E.H., Mabrouk M.S., Al-Atabany W., Mirjalili S., Henry gas solubility optimization: A novel physics-based algorithm, Future Generation Computer Systems, vol. 101, pp. 646–667 (2019), DOI: 10.1016/j.future.2019.07.015.
  • [20] Khalid A.M., Hamza H.M., Mirjalili S., Hosny K.M., MOCOVIDOA: a novel multi-objective coronavirus disease optimization algorithm for solving multi-objective optimization problems, Neural Computing and Applications, vol. 35, no. 23, pp. 17319–17347 (2023), DOI: 10.1007/s00521-023-08587-w.
  • [21] Ezugwu A.E., Agushaka J.O., Abualigah L., Mirjalili S., Gandomi A.H., Prairie Dog Optimization Algorithm, Neural Computing and Applications, vol. 34, no. 22, pp. 20017–20065 (2022), DOI: 10.1007/s00521-022-07530-9.
  • [22] Sulaiman M.H., Mustaffa Z., Saari M.M., Daniyal H., Mirjalili S., Evolutionary mating algorithm, Neural Computing and Applications, vol. 35, no. 1, pp. 487–516 (2023), DOI: 10.1007/s00521-022-07761-w.
  • [23] Chamchuen S., Siritaratiwat A., Fuangfoo P., Suthisopapan P., Khunkitti P., Adaptive salp swarm algorithm as optimal feature selection for power quality disturbance classification, Applied Sciences (Switzerland), vol. 11, no. 12 (2021), DOI: 10.3390/app11125670.
  • [24] Khunkitti S., Siritaratiwat A., Premrudeepreechacharn S., A Many-Objective Marine Predators Algorithm for Solving Many-Objective Optimal Power Flow Problem, Applied Sciences (Switzerland), vol. 12, no. 22 (2022), DOI: 10.3390/app122211829.
  • [25] Khunkitti S., Siritaratiwat A., Premrudeepreechacharn S., Multi-objective optimal power flow problems based on slime mould algorithm, Sustainability (Switzerland), vol. 13, no. 13 (2021), DOI: 10.3390/su13137448.
  • [26] Al-Kaabi M., Al Hasheme J., Al-Bahrani L., Improved Differential Evolution Algorithm to solve multi-objective of optimal power flow problem, Archives of Electrical Engineering, vol. 71, no. 3, pp. 641–657 (2022), DOI: 10.24425/aee.2022.141676.
  • [27] Branch N., A new method of decision making in multi-objective optimal placement and sizing of distributed generators in the smart grid, Archives of Electrical Engineering, vol. 72, no. 1, pp. 253–271 (2023), DOI: 10.24425/aee.2023.143701.
  • [28] Wolpert D.H., Macready W.G., No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82 (1997), DOI: 10.1109/4235.585893.
  • [29] Yang X.-S., Engineering Optimization: An Introduction with Metaheuristic Applications, John Wiley & Sons, Inc., Hoboken, New Jersey (2010), DOI: 10.1002/9780470640425.
  • [30] Chopra N., Mohsin Ansari M., Golden jackal optimization: A novel nature-inspired optimizer for engineering applications, Expert Systems with Applications, vol. 198, 116924 (2022), DOI: 10.1016/j.eswa.2022.116924.
  • [31] Qais M.H., Hasanien H.M., Alghuwainem S., Parameters extraction of three-diode photovoltaic model using computation and Harris Hawks optimization, Energy, vol. 195, 117040 (2020), DOI: 10.1016/j.energy.2020.117040.
  • [32] Qais M.H., Hasanien H.M., Alghuwainem S., Nouh A.S., Coyote optimization algorithm for parameters extraction of three-diode photovoltaic models of photovoltaic modules, Energy, vol. 187, 116001 (2019), DOI: 10.1016/j.energy.2019.116001.
  • [33] Eberhart R., Kennedy J., A new optimizer using particle swarm theory, Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, pp. 39–43 (1995), DOI: 10.1109/mhs.1995.494215.
  • [34] Yu K., Liang J.J., Qu B.Y., Cheng Z., Wang H., Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models, Applied Energy, vol. 226, pp. 408–422 (2018), DOI: 10.1016/j.apenergy.2018.06.010.
  • [35] Zhang Y., Jin Z., Zhao X., Yang Q., Backtracking search algorithm with Lévy flight for estimating parameters of photovoltaic models, Energy Conversion and Management, vol. 208, 112615 (2020), DOI: 10.1016/j.enconman.2020.112615.
  • [36] Derick M., Rani C., Rajesh M., Farrag M.E., Wang Y., Busawon K., An improved optimization technique for estimation of solar photovoltaic parameters, Solar Energy, vol. 157, pp. 116–124 (2017), DOI: 10.1016/j.solener.2017.08.006.
  • [37] Askarzadeh A., Rezazadeh A., Artificial bee swarm optimization algorithm for parameters identification of solar cell models, Applied Energy, vol. 102, pp. 943–949 (2013), DOI: 10.1016/j.apenergy.2012.09.052.
  • [38] Gao X., Cui Y., Hu J., Xu G., Wang Z., Qu J., Wang H., Parameter extraction of solar cell models using improved shuffled complex evolution algorithm, Energy Conversion and Management, vol. 157, pp. 460–479 (2018), DOI: 10.1016/j.enconman.2017.12.033.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c79283ae-3df7-40aa-bc3b-c382f57967fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.