PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study the Recycling of Red Mud in Iron Ore Sintering Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Red mud (RM), the by-product generated during the alumina extraction process, is considered a valuable secondary raw material, since iron (20–54%) represents its major constituent. Accordingly, the suitability of recycling this RM in the sintering process of Egyptian iron ore was studied. The effect of adding different amounts of RM to the sinter charge mixture (0–10 wt.%) on the sintering process performance as well as the chemical, physical and mechanical properties of the produced sinter was investigated. The results revealed that increasing the amount of red mud in the sinter charge mixture leads to a high improvement in the strength of the produced sinter till reaching a maximum at 7% addition, which deteriorates thereafter. Meanwhile, owing to the fine nature of the red mud, increasing its contents in the sinter charge mixture leads to reduced speed of the sintering process, which consequently affects the productivity at the blast furnace yard. The sinter produced with the addition of 3% red mud shows the highest reducibility. These results indicate the suitability of recycling RM in the Egyptian iron ore sintering process with an amount not higher than 3 wt.% of the total sinter mixture charge.
Rocznik
Strony
191--201
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Department of Metallurgy, Saint Petersburg Mining University, St. Petersburg, 2, 21st Line, St Petersburg 199106, Russia
  • Department of Minerals Technology and Processing, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan, Cairo, Egypt
  • Department of ATP, St. Petersburg mining University, St. Petersburg, 2, 21st Line, St Petersburg 199106, Russia
  • Process Metallurgy Research Group, Faculty of Technology, University of Oulu, Finland
  • Refractory and Ceramic Materials Department, Advanced Materials Division, Central Metallurgical Research and Development Institute, CMRDI, PO. Box 87, Helwan, Cairo, Egypt
Bibliografia
  • 1. Agrawal S., Rayapudi V., and Dhawan N. 2018. Microwave Reduction of Red Mud for Recovery of Iron Values. Journal of Sustainable Metallurgy, 3(4),427–43. doi: 10.1007/s40831–018–0183–3.
  • 2. Alkan G.C. Schier, Gronen L., Stopic S., and Friedrich B. 2017. A Mineralogical Assessment on Residues after Acidic Leaching of Bauxite Residue (Red Mud) for Titanium Recovery. Metals, 7(11), 1–11. doi: 10.3390/met7110458.
  • 3. Balomnenos E. Kastritis D., Panias D., Paspaliaris I., and Boufounos D. 2014. The Enexal Bauxite Residue Treatment Process: Industrial Scale Pilot Plant Results. Light Metals 2014, 141–47. doi: 10.1002/9781118888438.ch25.
  • 4. Bhoi, B.,Rajput P., and Mishra C.R. 2012. Processing of Red Mud by Low Temperature Microwave Hydrogen Plasma for Production of Iron : An EcoFriendly Technology. Processing of Red Mud by Low Temperature Microwave Hydrogen Plasma for Production of Iron: An Eco-Friendly Technology, 19, 79–684.
  • 5. Deelwal K.,Dharavath K., and Kulshreshtha M. 2014. Evaluation of Characteristic Properties of Red Mud for Possible Use as a Geotechnical Material in Civil Construction. International Journal of Advances in Engineering & Technology, 7(3), 1053–59.
  • 6. Dehghan-Manshadi A., Manuel J., Hapugoda S., and Ware N. 2014. Sintering Characteristics of Titanium Containing Iron Ores. ISIJ International, 54(10), 2189–95. doi: 10.2355/isijinternational.54.2189.
  • 7. El-Hussiny N.A., Mohamed F.M., and Shalabi M.E.H. 2011. Recycling of Mill Scale in Sintering Process. Science of Sintering, 43(1), 21–31. doi: 10.2298/SOS1101021E.
  • 8. El-Hussiny N.A., Khalifa A.A. El-midany A.A. Ahmed A.A. and Shalabi M.E.H. 2015. Effect of Replacement Coke Breeze by Charcoal on Technical Operation of Iron Ore Sintering. International Journal of Scientific & Engineering Research, 6(2),681–686
  • 9. Fouzi S.M., Kahlifa M.G., Ahmed Y.M.Z., Mohamed F.M., and Shalabi M.E.H. 2006. Sintering of Egyptian Iron Ore.” Górnictwo i Geoinżynieria, 30(3/1), 91–107.
  • 10. Khalifa A.A., Utkov V.A., and Brichkin V.N. 2020. Red Mud Effect on Dicalcium Silicate Polymorphism and Sinter Self-Destruction Prevention. Proceedings of Irkutsk State Technical University, 24(1), 231–40. doi: 10.21285/1814–3520–2020–1–231–240.
  • 11. Lebedev A.B., Utkov V.A., and Bazhin V.Yu. 2019. Use of Red Mud as a Modifier in Granulation of Metallurgical Slags. Proceedings of Irkutsk State Technical University, 23(1), 158–68. doi: 10.2128 5/1814–3520–2019–1–158–168. (In Russian).
  • 12. Liu Q., Xin C. Li C., Xu C., and Yang J. 2013. Application of Red Mud as a Basic Catalyst for Biodiesel Production. Journal of Environmental Sciences, 25(4), 823–29. doi: 10.1016/S1001–0742(12)60067–9.
  • 13. Liu Y, and Naidu R. 2014. Hidden Values in Bauxite Residue (Red Mud): Recovery of Metals. Waste Management, 34(12), 1–12.
  • 14. Luo M., Qi X., Zhang Y., Ren Y., Tong J., Chen Z., Hou Y., Yeerkebai N., Wang H., Feng S., and Li F. 2017. Study on Dealkalization and Settling Performance of Red Mud. Environmental Science and Pollution Research, 24(2), 1794–1802. doi: 10.1007/s11356–016–7928-y.
  • 15. Lyu F., Gao J., Sun N., Liu R., Sun X., Cao X., Wang L., and Sun W. 2019. Utilisation of Propyl Gallate as a Novel Selective Collector for Diaspore Flotation. Minerals Engineering, 131, 66–72. doi: 10.1016/j.mineng.2018.11.002.
  • 16. Mozharenko N., and Noskov V. 2005. Effect of Red Mud on the Metallurgical Properties of Sinter. Fundamental and Applied Problems of Ferrous Metallurgy, 10(10), 62–70.
  • 17. Mukiza E., Zhang L.L., Liu X., and Zhang N. 2019. Utilization of Red Mud in Road Base and Subgrade Materials: A Review. Resources, Conservation and Recycling 141, 187–99. doi: 10.1016/j.resconrec.2018.10.031.
  • 18. Pan X., Yu H., and Tu G. 2015. Reduction of Alkalinity in Bauxite Residue during Bayer Digestion in High-Ferrite Diasporic Bauxite. Hydrometallurgy, 151, 98–106. doi: 10.1016/j.hydromet.2014.11.015.
  • 19. Piirainen V.Yu, Boeva A.A., and Nikitina T.Y. 2020. Application of New Materials for Red Mud Immobilization. Key Engineering Materials, 854, 182–87. doi: 10.4028/www.scientific.net/KEM.854.182.
  • 20. Podgorodetskiy G., Gorbunov V., Panov A., Petrov S., and Gorbachev S. 2015. Complex Additives on the Basis of Red Mud for Intensification of Iron-Ore Sintering and Pelletizing, 107–11. doi: 10.1002/9781119093435.ch20.
  • 21. Pontikes Y., and Angelopoulos G.N. 2013. Bauxite Residue in Cement and Cementitious Applications: Current Status and a Possible Way Forward. Resources, Conservation and Recycling, 73, 53–63. doi: 10.1016/j.resconrec.2013.01.005.
  • 22. Pyagay I.N. 2016. The Block Processing of Red Mud of Alumina Production. Tsvetnye Metally, 7, 43–51. doi: 10.17580/tsm.2016.07.05.
  • 23. Pyagay I.N., Kozhevnikov V.L., Pasechnik L.А., and Skachkov V.М. 2016. Processing of Alumina Production Red Mud with Recovery of Scandium Concentrate. Journal of Mining Institute, 218, 225–32.
  • 24. Sai P.S., Pradesh A., Sukesh C., and Pradesh A. 2017. Strength Properties of Concrete by Using Red Mud as a Replacement of Cement with Hydrated Lime. International Journal of Civil Engineering and Technology (IJCIET), 8(3), 38–49.
  • 25. Samouhos M., Taxiarchou M., Tsakiridis P.E., and Potiriadis K. 2013. Greek ‘Red Mud’ Residue: A Study of Microwave Reductive Roasting Followed by Magnetic Separation for a Metallic Iron Recovery Process. Journal of Hazardous Materials, 254–255(1), 193–205. doi: 10.1016/j.jhazmat.2013.03.059.
  • 26. Shiryaeva E.V., Podgorodetskii G.S., Malysheva T.Y., Gorbunov V.B, Zavodyanyi A.V., and Shapovalov A.N. 2014. Effects of Adding Low-Alkali Red Mud to the Sintering Batch at OAO Ural’skaya Stal’.Izvestiya VUZ. Chernaya Metallurgiya, 44(1), 6–10. doi: 10.3103/S0967091214010173.
  • 27. Trushko V.L., and Utkov V.A. 2016. Development of Import Substituting Technologies for Increasing Productivity of Sintering Machines and Strength of Agglomerates. Journal of Mining Institute, 221, 675–80. doi: 10.18454/PMI.2016.5.675.
  • 28. Trushko V.L., Utkov V.A., and Sivushov A.A. 2017. Reducing the Environmental Impact of Blast Furnaces by Means of Red Mud from Alumina Production. Steel in Translation, 47(8), 576–78. doi: 10.3103/S0967091217080149.
  • 29. Umadevi T., Brahmacharyulu A., Roy A.K., Mahapatra P.C., Prabhu M., and Ranjan M. 2011. Influence of Iron Ore Fines Feed Size on Microstructure, Productivity and Quality of Iron Ore Sinter. ISIJ International, 51(6), 922–29.
  • 30. Utkov V.A., and Leontiev L.I. 2005. Increasing the Strength of Agglomerates and Pellets with Bauxite Red Mud. Stal’, 9, 2–4.
  • 31. Wang Li, Hu G., Lyu F., Yue T., Tang H., Han H., Yang Y., Liu R., and Sun W. 2019. Application of Red Mud in Wastewater Treatment. Minerals, 9(5), 281.
  • 32. Webster Nathan A.S., Mark I. Pownceby, Ian C. Madsen, Csiro Process Science, and Clayton South. 2013. In Situ X-Ray Diffraction Investigation of the Formation Mechanisms of Silico-Ferrite of Calcium and Aluminium-I-Type ( SFCA-I-Type ) Complex Calcium Ferrites, 53(8), 1334–40.
  • 33. Zhu X Feng, Zhang T., Wang Ya., Lü G., and Zhang W. 2016. Recovery of Alkali and Alumina from Bayer Red Mud by the Calcification–Carbonation Method. International Journal of Minerals, Metallurgy and Materials, 23(3), 257–68. doi: 10.1007/s12613–016–1234-z.
  • 34. Zinoveev D.V., Grudinskii P.I., Dyubanov V.G., Kovalenko L.V., and Leont’ev L.I. 2018. Global Recycling Experience of Red Mud – a Review. Part i: Pyrometallurgical Methods. Izvestiya Ferrous Metallurgy, 61(11), 843–58. doi: 10.17073/0368–0797–2018–11–843–858.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c78ce7f5-8a1b-4d18-9deb-20f03da1eaec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.