Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This research paper investigates the application of neural network models for forecasting in energy. The results of forecasting the weekly energy consumption of the enterprise according to the model of a multilayer perceptron at different values of neurons and training algorithms are given. The estimation and comparative analysis of models depending on model parameters is made.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
65--71
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr., wzory
Twórcy
autor
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
autor
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
autor
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
autor
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
autor
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
Bibliografia
- [1] Vinoslavsky V.N., Forecasting the power consumption of industrial facilities, Vinoslavsky V.N., Prakhovnik A.V., Bondarenko A.F., Energy and electrification, 1974, No. 5, pp. 30-31.
- [2] Prakhovnik A.V., Energy-saving modes of power supply of mining enterprises, Prahovnik A.V., Rosen V.P., Degtyarev V.V., Moscow: Bosom, 1985, 232 p.
- [3] Kalinchik V.P., Kokorina M.T., Forecasting of indicators of energy consumption, generation and cost of the received energy, NTUU “KPI” N.-i. Institute of Automation and Power Engineering "Energy". Kiev 2013, 14 p.: bibliographic illustrations: 7 - deposit in SSTLU Ukraine 22.07.13, No. 35, Uk 2013.
- [4] Voloshko A.V., Lutchin T.M., Kladko O.M., Short-term forecasting of electric load graphs based on wavelet transforms, Energosberezhenie, vol. Energy. Energy audit, 2012, No. 6, pp. 35-42.
- [5] Chernenko P.O., Martyniuk O.V., Miroshnyk V.O., Peculiarities of short-term forecasting of electric load of power system with essential component of industrial power consumption, Proceedings of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine, 2016, No. 43, pp. 24-31.
- [6] Tikhonov E.E., Forecasting methods in market conditions, textbook, E.E. Tikhonov, Nevinnomyssk: North Caucasian GTU, 2006, 221 p., ISBN 5895710778.
- [7] Zaigraeva Yu.B., Neural network models for assessing and planning energy losses in electrical systems, author dis. for a job. scientific. degree of Cand. those. Sciences: spec. 05.14.02 "Power Plants and Electric Power Systems", Zaigraeva Yulia Borisovna; Novosibirsk state technical university, Novosibirsk 2008, 20 p.
- [8] Sukhbaataryn Munkhzhargal, Development and research of neural network algorithms for short-term forecasting of the load of the central electric power system of Mongolia, dissertation of the PhD: 05.14.02, Sukhbaataryn Munkhzha, Novosibirsk 2004, 177 p.
- [9] Shumilova G.P., Prediction of electrical loads in the operational control of electric power systems based on neural network structures, Shumilova G.P., Gotman N.E., Startseva T.B., Syktyvkar: RAS, 2008, 78 p.
- [10] Chuchueva I.A., Model for forecasting time series based on a sample of maximum similarity, dissertation of the PhD: 05.13.18, Chuchueva I.A., Moscow 2012, 153 p.
- [11] Komashinsky V.I., Smirnov D.A., Neural networks and their application in control and communication systems, Moscow: Hotline - Telecom, 2002, 94 p.
- [12] Medvedev V.S., Potemkin V.G., Neural networks. MATLAB 6, Moscow: Dialogue -МIFE, 2002, 496 p.
- [13] Kruglov V.V., Borisov V.V., Artificial neural networks. Theory and practice, Moscow. Hotline - Telecom. 2002, 382 p.
- [14] Neural networks. STATISTICA Neural Networks. Moscow: Hotline - Telecom, 2000, 182 p.
- [15] Haykin S., Neural Networks: A Complete Course. 2-nd edition. Translation from English. Moscow: Williams, 2006, 1104 p.
- [16] Surovtsev I.S., Klyukin V.I., Pivovarova R.P., Neural networks, Voronezh: HSU, 1994, 224 p.
- [17] Kalinchik V.P., Energy-efficient control of the "crusher-mill" mechatronic complex using artificial neural networks, Kalinchik V.P., Rosen V.P., Shevchuk S.P., Meita A.V., Energy: economics, technology, ecology, 2016, No. 3, pp. 45-50.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c7861755-65e5-4ad1-ba62-be7c5a0bee71