PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents new results on the application of microplasma spraying (MPS) for manufacturing electric heating elements (EHEs) consisting of a St3 steel plate (the substrate) with a sprayed electrically insulating Al2O3 sublayer (400±50 μm thick) and TiO2 electric heating tracks (4 mm width; 150±50 μm thickness). Measurements of the temperature of the multilayer coating with a thermal imager enabled determination of the temperature distribution over the surface of the EHE. The electric strength and conductivity tests showed the efficiency of the sprayed EHEs up to a temperature of 200°C. The results of analysis of the causes of material losses during MPS of electric heating tracks (TiO2) are presented, and the optimal parameters for efficient MPS of coatings in the form of narrow tracks on steel substrates are determined. Using regression analyses, the equation for the influence of MPS parameters on the coating transfer efficiency (CTE) is obtained. Process parameters such as the electric current and the plasma-forming gas flow rate have been found to have the greatest influence on the CTE. In the experiment, a high efficiency of the sprayed material during MPS of electric heating tracks of TiO2 powder was established (the maximum CTE reached 89%), which indicates the prospects for using MPS technology in the production of EHEs for DC electric heating and for maintaining the temperature of product surfaces up to 200°C.
Wydawca
Rocznik
Strony
158--170
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Department of Protective Coatings, E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 11 Kazymyr Malevich Street, Kyiv 03150, Ukraine
  • School of Information Technologies and Intelligent Systems, D. Serikbayev East Kazakhstan Technical University, 69 Protozanov Street, Ust-Kamenogorsk 070004, Kazakhstan
  • Department of Protective Coatings, E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 11 Kazymyr Malevich Street, Kyiv 03150, Ukraine
  • Department of Protective Coatings, E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 11 Kazymyr Malevich Street, Kyiv 03150, Ukraine
  • School of Information Technologies and Intelligent Systems, D. Serikbayev East Kazakhstan Technical University, 69 Protozanov Street, Ust-Kamenogorsk 070004, Kazakhstan
  • Department of Metal Forming, Welding and Metrology, Faculty of Mechanical Engineering, University of Science and Technology, Wrocław 50370, Poland
  • School of Information Technologies and Intelligent Systems, D. Serikbayev East Kazakhstan Technical University, 69 Protozanov Street, Ust-Kamenogorsk 070004, Kazakhstan
  • Department of Physics, Faculty of Natural Sciences and Technology, S.Amanzholov East Kazakhstan University, 30 Gvardeiskya St., Ust-Kamenogorsk 070002, Kazakhstan
Bibliografia
  • [1] Yang K, Zhou YZ, Liu M, Song JB, Deng CM. Performance of plasma-sprayed MoSi2-based coating as a heating element. Ceram Int. 2020;46(16): 25430–9. doi:10.1016/j.ceramint.2020.07.013.
  • [2] Bobzin K., Wietheger W., Heinemann H., Schacht A. (2021). TiOx/Cr2O3 Heating Coatings for Injection Molding of Polyamide. In: Reisgen, U., Drummer, D., Marschall, H. (eds) Enhanced Material, Parts Optimization and Process Intensification. EMPOrIA 2020. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-70332-5_8
  • [3] Pashkevich AV, Fedotov AK, Poddenezhny EN, Bliznyuk LA, Fedotova JA, Basov NA, et al. Structure, electric and thermoelectric properties of binary ZnO-based ceramics doped with Fe and Co. J Alloys Compd. 2022;895(2): 162621. doi:10.1016/j.jallcom.2021.162621.
  • [4] Heating Elements Firms ONYX. Available from: http://onyxmef.narod.ru/nagrev.htm [Accessed 24th August 2022].
  • [5] Naghdi S, Rhee KY, Hui D, Park SJ. A review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: different deposition methods and applications. Coatings. 2018;8(8): 278. doi:10.3390/coatings8080278.
  • [6] Zhao Z, Chen H, Liu X, Wang Z, Zhu Y, Zhou Y. The development of electric heating coating with temperature controlling capability for anti-icing/deicing. Cold Reg Sci Technol. 2021;184: 103234. doi:10.1016/j.coldregions.2021.103234.
  • [7] Conze S, Grimm M, Berger L-M, Thiele S, Drehmann R, Lampke T. Influence of simultaneous Cr2O3 and TiO2 additions on the microstructure and properties of APS alumina coatings. Surf Coat Technol. 2020;405(15): 126702. doi:10.1016/j.surfcoat.2020.126702.
  • [8] Scheitz S, Toma F-L, Berger L-M, Puschman R, Sauchuk V, Kusnezoff M. Thermally sprayed multilayer ceramic heating elements. Therm Spray Bull. 2011;2: 88–92.
  • [9] Li X, Yang K, Wang D, Deng C, Zhou Y. Property of TiO2-15MgAl2O4 electrical-heating coating prepared by atmospheric plasma spraying and hydrogen heat treatment. Coatings. 2020;10: 177. doi:10.3390/coatings10020177.
  • [10] Vashkevich FF, Spalnik AY, Pluzhko IA. Electrical thermal insulation of inductors for internal heating of tubular blanks. Constr Mater Sci Mech Eng PGASA. 2009;48(1): 4–6.
  • [11] Bobzin K, Wietheger W, Knoch MA, Schacht A. Heating behavior of plasma sprayed TiOx/Cr2O3 coatings for injection molding. Surf Coat Technol. 2020;399: 126199. doi:10.1016/j.surfcoat.2020.126199.
  • [12] Smyth RT, Andersen JC. Production of resistors by arc plasma spraying. Electrocomponent Sci Technol. 1975;2: 135–45, Gordon and Breach Science Publishers Limited. doi:10.1155/APEC.2.135.
  • [13] Hajaligol MR, Fleischhauer GS, Deevi SC, Higgins CT, Hayes PH, Herman H, et al. Tubular heater for use in an electrical smoking article. U.S. Patent 5,665,262. 9th September 1997.
  • [14] Michels D, Hadeler J, Lienhard VJH. High-heatflux resistance heaters from VPS and HVOF thermal spraying. Exp Heat Transf. 1998;11(4): 341–59. doi:10.1080/08916159808946570.
  • [15] Prudenziati M, Cirri G, Dal Bo P. Novel high-temperature reliable heaters in plasma spray technology. J Therm Spray Technol. 2006;15(3): 329–31. doi:10.1361/105996306x124293.
  • [16] Zehui Z, Huawei C, Xiaolin L, Zelinlan W, Yantong Z, Yuping Z. The development of electric heating coating with temperature controlling capability for anti-icing/deicing. Cold Reg Sci Technol. 2021;184(1–2): 103234. doi:10.1016/j.coldregions.2021.103234.
  • [17] Rad MR, Bajgiran MM, Moreau C, McDonald A. Fabrication of thermally sprayed coating systems for mitigation of ice accumulation in carbon steel pipes and prevention of pipe bursting. Surf Coat Technol. 2020;397: 126013. doi:10.1016/j.surfcoat.2020.126013.
  • [18] Borisov YuS, Vojnarovich SG, Kislitsa AN, Kalyuzhny SN, Glukhovsky VYu. Application of the method of microplasma spraying for manufacturing resistance heating element. Paton Weld J. 2018;2: 33–7. doi:10.15407/tpwj2018.02.07.
  • [19] AZoNetwork. Titanium Dioxide. Available from: https://www.azom.com/properties.aspx?ArticleID=1179 [Accessed 24th August 2022].
  • [20] Bajgiran MM, Rad MR, McDonald A, Moreau C. Microstructure, phase and dielectric strength of thermally sprayed alumina layers in coating-based heating systems. Int J Appl Ceram Technol. 2021;18(5): 1–16. doi:10.1111/ijac.13731.
  • [21] Yushenko K, Borisov Y, Voynarovych S, Fomakin O. Plasmatron for spraying of coatings. Pub. No.:WO/2004/010747, International Application No.: PCT/UA2003/000014, Publication date: 29.01.2004. (IRP4).
  • [22] Voinarovych SG. Alontseva DL, Khozhanov AR, Krasavin AL, Kyslytsia AN, Kalyuzhny SN. Effect of microplasma spraying parameters on losses of sprayed Zr wire and coating porosity. Bulletin of KazNU. Phy Ser. 2021;79(4): 82–96. doi:10.26577/RCPh.2021.v79.i4.10.
  • [23] ASTM International USA. Standard test methods for determining area percentage porosity in thermal sprayed coatings; 2021. p.E2109–01. Available from: Nov 04, 2021 https://www.astm.org/e2109-01r21.html
  • [24] Montgomery DC, Runger GC, Hubele NR. Engineering Statistics. 5th ed. Hoboken: John Wiley and Sons Inc; 2015.
  • [25] Bobzin K, Öte M, Knoch MA, Alkhasli I. Temperature distribution on thermally sprayed heating conductor coatings. In: IOP Conference: Materials Science and Engineering. 21st Chemnitz Seminar on Materials Engineering, 6–7 March 2019 (Germany);480(1): 11. doi:10.1088/1757-899X/480/1/012002.
  • [26] Barabanova EV, Zaborovsky KM, Posadova EM, Castro RA. Effect of porosity on electrophysical properties of PZT ceramics. In: Proceedings of the Russian State Pedagogical University. A.I. Herzen. 2013;157: 79–83. doi:10.1088/1757-899X/49/1/012026.
  • [27] Gulyaev IP, Kuzmin VI, Golubev MP, Tyryshkin PA, Dolmatov AV. Visualization of the gas-dynamic structure of plasma flows of the deposition plasma torch “PNK-50” by the shadow method. Bull Yugra State Univ. 2018;4(51): 61–8. doi:10.17816/byusu20180461-68.
  • [28] Gao L, Ma L, Liu Y, Hu H. A novel heating-coating hybrid strategy for wind turbine icing mitigation. In: International Conference on Icing of Aircraft, Engines, and Structures, 10 June 2019, USA. doi:10.4271/2019-01-2029.
  • [29] Yousefzadeh Z, Rad MR, McDonald A, Lloyd SM. Life cycle assessment of a thermal sprayed Al2O3-NiCr resistive heating coating for pipe freeze protection. J Therm Spray Technol. 2022;31(2): 378–95. doi:10.1007/s11666-021-01308-6.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c7853a4f-1f39-4a4b-92ce-575e3a067e06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.