PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gas turbine vibration monitoring based on real data and neuro-fuzzy system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The gas turbine is considered to be a very complex piece of machinery because of both its static structure and the dynamic behavior that results from the occurrence of vibration phenomena. It is required to adopt monitoring and diagnostic procedures for the identification and localization of vibration flaws in order to ensure the appropriate operation of large rotating equipment such as gas turbines. This is necessary in order to avoid catastrophic failures and deterioration and to ensure that proper operation occurs. Utilizing an approach that is based on spectrum analysis, the purpose of this study is to provide a model for the monitoring and diagnosis of vibrations in a GE MS3002 gas turbine and its driven centrifugal compressor. This will be done by utilizing the technique. Following that, the collection of vibration measurements for a model of the centrifugal compressor served as a suggestion for an additional method. This method is based on the neuro-fuzzy approach type ANFIS, and it aims to create an equivalent system that is able to make decisions without consulting a human being for the purpose of detecting vibratory defects. In spite of the fact that the compressor that was investigated has flaws, this procedure produced satisfactory results.
Czasopismo
Rocznik
Strony
art. no. 2024108
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • Faculty of Science and Technology, University of Djelfa 17000 DZ, Algeria
  • Faculty of Science and Technology, University of Djelfa 17000 DZ, Algeria
  • Department of Computer, Automation and Management Engineering, Sapienza University of Rome, Italy
  • Department of Computer, Automation and Management Engineering, Sapienza University of Rome, Italy
  • Institute for Systems Analysis and Computer Science, Italian National Research Council, Italy
  • Department of Computational Intelligence, Czestochowa University of Technology, Czestochowa, Poland
  • L’École Supérieure de Physique et de Chimie Industrielles, Paris, France
  • Faculty of Science and Technology, University of Djelfa 17000 DZ, Algeria
Bibliografia
  • 1. El-Shazly AA, Elhelw M, Sorour MM, El-Maghlany WM. Gas turbine performance enhancement via utilizing different integrated turbine inlet cooling techniques. Alexandria Engineering Journal 2016; 55(3): 1903-14. https://doi.org/10.1016/j.aej.2016.07.036.
  • 2. Pourbabaee B, Meskin N, Khorasani K. sensor fault detection, isolation, and identification using multiplemodel-based hybrid Kalman filter for gas turbine engines. IEEE Transactions on Control Systems Technology 2016; 24(4): 1184-200. https://doi.org/10.1109/TCST.2015.2480003.
  • 3. Sina Tayarani-Bathaie S, Khorasani K. Fault detection and isolation of gas turbine engines using a bank of neural networks. Journal of Process Control 2015; 36: 22-41. https://doi.org/10.1016/j.jprocont.2015.08.007.
  • 4. Tabkhi F, Pibouleau L, Hernandez-Rodriguez G, Azzaro-Pantel C, Domenech S. Improving the performance of natural gas pipeline networks fuel consumption minimization problems. AIChE Journal 2010; 56(4): 946-64. https://doi.org/10.1002/aic.12011.
  • 5. Grange B, Dalet C, Falcoz Q, Ferrière A, Flamant G. Impact of thermal energy storage integration on the performance of a hybrid solar gas-turbine power plant. Applied Thermal Engineering 2016; 105: 266-75. https://doi.org/10.1016/j.applthermaleng.2016.05.175.
  • 6. Dong X, Axinte D, Palmer D, Cobos S, Raffles M, Rabani A, i in. Development of a slender continuum robotic system for on-wing inspection/repair of gas turbine engines. Robotics and Computer-Integrated Manufacturing 2017; 44: 218-29. https://doi.org/10.1016/j.rcim.2016.09.004.
  • 7. Lu F, Ju H, Huang J. An improved extended Kalman filter with inequality constraints for gas turbine engine health monitoring. Aerospace Science and Technology 2016; 58: 36-47. https://doi.org/10.1016/j.ast.2016.08.008.
  • 8. Igor O, Lyubomyr P, Vasyl Z, Andrii H, Liubov P, Andrij S, et.al. Impact of Long-Term Operation on the Reliability and Durability of Transit Gas Pipelines. Strojnícky časopis - Journal of Mechanical Engineering 2020; 70(1): 115-26. https://doi.org/10.2478/scjme-2020-0011.
  • 9. Ewins DJ. Control of vibration and resonance in aero engines and rotating machinery - An overview. International Journal of Pressure Vessels and Piping 2010; 87(9): 504-10. https://doi.org/10.1016/j.ijpvp.2010.07.001.
  • 10. Zhou X, Lu F, Zhou W, Huang J. An improved multivariable generalized predictive control algorithm for direct performance control of gas turbine engine. Aerospace Science and Technology 2020; 99: 105576. https://doi.org/10.1016/j.ast.2019.105576.
  • 11. Bornassi S, Ghalandari M, Maghrebi SF. Blade synchronous vibration measurements of a new upgraded heavy duty gas turbine MGT-70(3) by using tip-timing method. Mechanics Research Communications 2020; 104: 103484. https://doi.org/10.1016/j.mechrescom.2020.103484.
  • 12. Li J, Ying Y. Gas turbine gas path diagnosis under transient operating conditions: A steady state performance model based local optimization approach. Applied Thermal Engineering 2020; 170: 115025. https://doi.org/10.1016/j.applthermaleng.2020.11502 5.
  • 13. Yazdani S, Montazeri-Gh M. A novel gas turbine fault detection and identification strategy based on hybrid dimensionality reduction and uncertain rule-based fuzzy logic. Computers in Industry 2020; 115: 103131. https://doi.org/10.1016/j.compind.2019.103131.
  • 14. Agh SM, Pirkandi J, Mahmoodi M, Jahromi M. Development of a novel rotary flow control valve with an electronic actuator and a pressure compensator valve for a gas turbine engine fuel control system. Flow Measurement and Instrumentation 2020; 74: 101759. https://doi.org/10.1016/j.flowmeasinst.2020.101759.
  • 15. Nail B, Bekhiti B, Puig V. Internal stability improvement of a natural gas centrifugal compressor system based on a new optimal output feedback controller using block transformation and grey wolf optimizer. Journal of Natural Gas Science and Engineering 2021; 85: 103697. https://doi.org/10.1016/j.jngse.2020.103697.
  • 16. Ishak KEHK, Ayoub MA, Predicting the Efficiency of the Oil Removal From Surfactant and Polymer Produced Water by Using Liquid-Liquid Hydrocyclone: Comparison of Prediction Abilities Between Response Surface Methodology and Adaptive Neuro-Fuzzy Inference System. IEEE Access 2019; 7: 179605-179619. https://doi.org/10.1109/ACCESS.2019.2955492.
  • 17. Heo SJ, Chunwei Z, Yu E. Response Simulation, Data Cleansing and Restoration of Dynamic and Static Measurements Based on Deep Learning Algorithms. International Journal of Concrete Structures and Materials 2018; 82. https://doi.org/10.1186/s40069-018-0316-x.
  • 18. Batrakov DO, Batrakova AG, Antyufeyeva MS. Combined GPR data analysis technique for diagnostics of structures with thin near-surface layers. Diagnostyka 2018; 19(3): 11-20. https://doi.org/10.29354/diag/91489.
  • 19. Wayan S, Kemal MA. Modeling of Tropospheric Delays Using ANFIS. Springer Cham.; 1(16): 109. https://doi.org/10.1007/978-3-319-28437-8.
  • 20. Bulnes F. Retracted: A Modern Review of Wavelet Transform in Its Spectral Analysis. Recent Advances in Wavelet Transforms and Their Applications. 2022. https://doi.org/10.5772/intechopen.105559.
  • 21. Heo SJ, Chunwei Z, Yu E. Response Simulation, Data Cleansing and Restoration of Dynamic and Static Measurements Based on Deep Learning Algorithms. International Journal of Concrete Structures and Materials 2018; 12(1): 82. https://doi.org/10.1186/s40069-018-0316-x.
  • 22. Lal M. Modeling and estimation of speed dependent bearing and coupling misalignment faults in a turbine generator system. Mech Syst Sig Process 2021; 151: 107365. https://doi.org/10.1016/j.ymssp.2020.107365.
  • 23. Gazzar DME. An integrated study for solving high vibration problem of a deep well turbine pump. Diagnostyka 2023; 24(2): 1-7. https://doi.org/10.29354/diag/166096.
  • 24. Bouaouiche K, Menasria Y, Khalfa D. Detection of defects in a bearing by analysis of vibration signals. Diagnostyka 2023; 24(2): 1-7. https://doi.org/10.29354/diag/162230.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c7838927-6560-4e9f-9ce5-16f92f002e1a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.