PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Power Amplification and Selectivity in the Cochlear Amplifier

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a new model that describes the physical phenomena occurring in an individual Outer Hair Cell (OHC) in the human hearing organ (Cochlea). The new model employs the concept of parametric amplification and piezoelectricity. As a consequence, the proposed model may explain in a natural way many as yet unresolved problems about the mechanisms of: 1) power amplification, 2) non- linearity, 3) fine tuning, or 4) high sensitivity that take place in the human hearing organ. Mathematical analysis of the model is performed. The equivalent electrical circuits of an individual OHC are established. The high selectivity of the OHC parametric amplifier is analyzed by solving the resulting Mathieu and Ince differential equations. An analytical formula for the power gain in the OHC’s parametric amplifier has been developed. The proposed model has direct physical interpretation and all its elements have their physical counterparts in the actual structure of the cochlea. The numerical values of the individual elements of the electrical equivalent circuits are consistent with the experimental physiological data. It is anticipated that the proposed new model may contribute in future improvements of human cochlear implants as well as in development of new digital audio standards.
Rocznik
Strony
83--92
Opis fizyczny
Bibliogr. 26 poz., tab., wykr.
Twórcy
  • Research Group of Acoustoelectronics, Institute of Fundamental Technological Research, Polish Academy of Sciences Pawinskiego 5B, 02-106 Warsaw, Poland
Bibliografia
  • 1. Von Bekesy G. (1960), Experiments in Hearing, McGrow-Hill, New York.
  • 2. de Boer E. (1995), On equivalence of locally active models of the cochlea, Journal of the Acoustical Society of America, 98, 3, 1400-1409.
  • 3. Camalet S., Duke T., Julicher F., Prost J. (2000), Auditory sensitivity provided by self-tuned critical oscillations of hair cells, Proc. Natl. Acad. Sci. U.S.A., 97, 3183-3188.
  • 4. Cohen A., Furst M. (2004), Integration of outer hair cell activity in a one-dimensional cochlear model, Journal of the Acoustical Society of America, 115, 5, 2185-2192.
  • 5. Deo N. V., Grosh K. (2005), Simplified nonlinear outer hair cell models, Journal of the Acoustical Society of America, 117, 4, 2141-2146.
  • 6. Dimitriadis E. K. (1999), Solution of the inverse problem for a linear cochlear model: A tonotopic cochlear amplifier, Journal of the Acoustical Society of America, 106, 4, 1880-1892.
  • 7. Eguiluz V. M., Ospeck M., Choe Y., Hudspeth A. J., Magnasco M. O. (2000), Essential nonlinearities in hearing, Physical Review Letters, 84, 5232-5235.
  • 8. Eliot S. J., Shera C.A. (2012), The cochlea as a smart structure, Smart Materials and Structures, 21, 064011.
  • 9. Gold T. (1948), Hearing. II. The physical basis of the action of the cochlea, Proc. R. Soc. London B. Biol. Sci., 135, 492-498.
  • 10. Golde W. (1976), Electronic systems [in Polish], Vol. II, Chap. 5, WNT, Warsaw.
  • 11. Helmholtz H. L. F. (1954), On the sensations of Tones as a Physiological Basis for the Theory of Music, Dover Publications Inc., New York.
  • 12. Iwasa K. H. (1994), A membrane motor model for thefast motility of the outer hair cell, Journal of the Acoustical Society of America, 96, 4, 2216-2224.
  • 13. Liao Z., Feng S., Popel A. S. (2007), Outer hair cell active force generation in the cochlear environment, Journal of the Acoustical Society of America, 121, 5, 2758-2773.
  • 14. Liu T. K., Zhak S., Dallos P., Sarpeshkar R. (2006), Fast cochlear amplification with slow outer hair cells, Hearing Research, 214, 45-67.
  • 15. Liu Y. W., Neely S. T. (2009), Outer hair cell electromechanical properties in a nonlinear piezoelectric model, Journal of the Acoustical Society of America, 126, 2, 751-761.
  • 16. Louisell W.H. (1960), Coupled Mode and Parametric Electronics, Chap. 4, Wiley, New York.
  • 17. Magnasco M. O. (2003), A wave travelling over a Hopf instability shapes the cochlear tuning curve, Physical Review Letters, 90, 058101-4.
  • 18. Maoileidigh D. O., Julicher F. (2010), The interplay between active hair bundle motility and electromotility in the cochlea, Journal of the Acoustical Society of America, 128, 3, 1175-1190.
  • 19. Mountain D. C., Hubbard A. E. (1994), A piezoelectric model of outer hair cell function, Journal of the Acoustical Society of America, 95, 1, 350-354.
  • 20. Ospeck M., Dong X., Iwasa K.H. (2003), Limiting frequency of the cochlear amplifier based on electromotility of outer hair cells, Biophys. J., 84, 739-749.
  • 21. Ramamoorthy S., Deo N. V., Grosh K. (2007), A mechano-electro-acoustical model for the cochlea: Response to acoustic stimuli, Journal of the Acoustical Society of America, 121, 5, 2758-2773.
  • 22. Rattay F., Gebeshuber I. C., Gitter A. H. (1998), The mammalian auditory hair cell: A simple electric circuit model, Journal of the Acoustical Society of America, 103, 3, 1558-1565.
  • 23. Reinchenbach T., Hudspeth A. J. (2010), A ratchet mechanism for amplification in low-frequency mammalian hearing, Proc. Natl. Acad. Sci. U.S.A, Vol. 107, No 11, 4973-4978, Supporting Information.
  • 24. Shera C. A. (2007), Laser amplification with a twist:Travelling-wave propagation and gain functions from throughout the cochlea, Journal of the Acoustical Society of America, 122, 5, 2738-2758.
  • 25. Spector A. A. (2005), Effectiveness, active energy produced by molecular motors, and nonlinear capacitance of the cochlear outer hair cell, J. Biomech. Eng., 127, 391-399.
  • 26. Weitzel E. K., Tasker R., Brownell W. E. (2003), Outer hair cell piezoelectricity: Frequency response enhancement and resonant behavior, Journal of the Acoustical Society of America, 114, 3, 1462-1466.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c782f6c8-5891-4e6f-a3ac-a17a4b9c4138
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.