Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study aims to explore the synergistic effects of co-inoculation with Fusarium solani (F.s), Fusarium oxysporum (F.o), and Penicillium chrysogenum (P.ch) to enhance the digestibility and quality of lignocellulosic biomass for ruminant feeding. Wheat straw (WS), olive pomace (OP), and cedar wood (CW) were assessed as substrates. Results indicated varying impacts on lignin loss (L_loss), cellulose improvement (C_imp), and in vitro true digestibility improvement (IVTD_imp). F.o and P.ch co-inoculation exhibited the highest mean L_loss (53.74%), surpassing F.s and P.ch co-inoculation (18.23%) and F.s and F.o co-inoculation (19.23%). F.o_P.ch co-inoculation notably increased cellulose content (C_imp = 29.86 ± 18.19%) and IVTD_imp (40.74% ± 20.51%), while F.o_F.s showed minimal IVTD_imp (0.14 ± 11.42%). Substrates differed in fiber change and dry matter loss, with OP having the highest C_imp (25.6 ± 20.7%). Treatment duration influenced L_loss and IVTD_imp, increasing from 4 to 12 weeks. Co-inoculating F.o and P.ch enhances lignin degradation and biomass digestibility, improving their suitability for ruminant feed. Thoughtful selection of fungal combinations is crucial for optimizing co-inoculation. These findings support the utilisation of lignocellulosic biomass in ruminant feed.
Wydawca
Rocznik
Tom
Strony
120--132
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
autor
- Laboratory of Plant Biotechnology and Molecular Biology, Moulay Ismail University, BP 11201 Zitoune, Meknes, Morocco
autor
- Laboratory of Chemistry and Biology Applied to the Environment, Moulay Ismail University, BP 11201 Zitoune, Meknes, Morocco
autor
- Laboratory of Chemistry and Biology Applied to the Environment, Moulay Ismail University, BP 11201 Zitoune, Meknes, Morocco
Bibliografia
- 1. Adusei-Gyamfi J., Boateng K.S., Sulemana A., Hogarh J.N. 2022. Post COVID-19 recovery: Challenges and opportunities for solid waste management in Africa. Journal: Environmental Challenges 6, 100442. https://doi.org/10.1016/j.envc.2022.100442.
- 2. Agyeman S., Duah Lin B. 2022. Nonrenewable and renewable energy substitution, and low–carbon energy transition: Evidence from North African countries. Journal: Renewable Energy 194, 378–395. https://doi.org/10.1016/J.RENENE.2022.05.026.
- 3. Bavaro S.L., Susca A., Frisvad J.C., Tufariello M., Chytiri A., Perrone G., Mita G., Logrieco A.F., Bleve G. 2017. Isolation, characterization, and selection of molds associated with fermented black table olives. Journal: Frontiers in Microbiology 8. https://doi.org/10.3389/fmicb.2017.01356.
- 4. Beltrán-Flores E., Pla-Ferriol M., Martínez-Alonso M., Gaju N., Sarrà M., Blánquez P. 2023. Fungal treatment of agricultural washing wastewater: Comparison between two operational strategies. Journal: Journal of Environmental Management 325. https://doi.org/10.1016/j.jenvman.2022.116595
- 5. Bernal S.A., Rodríguez E.D., Kirchheim A.P., Provis J.L. 2016. Management and valorisation of wastes through use in producing alkali-activated cement materials. Journal: Journal of Chemical Technology and Biotechnology 91, 2365–2388. https://doi.org/10.1002/JCTB.4927.
- 6. Brinchi L., Cotana F., Fortunati E., Kenny J.M. 2013. Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Journal: Carbohydrate Polymers https://doi.org/10.1016/j.carbpol.2013.01.033.
- 7. Brown M.E., Chang M.C.Y. 2014. Exploring bacterial lignin degradation. Journal: Current Opinion in Chemical Biology https://doi.org/10.1016/j.cbpa.2013.11.015.
- 8. Castellani F., Vitali A., Bernardi N., Marone E., Palazzo F., Grotta L., Martino G. 2017. Dietary supplementation with dried olive pomace in dairy cows modifies the composition of fatty acids and the aromatic profile in milk and related cheese. Journal: Journal of Dairy Science 100, 8658–8669. https://doi.org/10.3168/jds.2017–12899.
- 9. Cheng H.H., Whang L.M. 2022. Resource recovery from lignocellulosic wastes via biological technologies: Advancements and prospects. Journal: Bioresource Technology 343, 126097. https://doi.org/10.1016/J.BIORTECH.2021.126097.
- 10. Dashtban M., Schraft H., Syed T.A., Qin W. 2010. Fungal biodegradation and enzymatic modification of lignin. Journal: International Journal of Biochemistry and Molecular Biology 1, 36–50.
- 11. Den W., Sharma V.K., Lee M., Nadadur G., Varma R.S. 2018. Lignocellulosic biomass transformations via greener oxidative pretreatment processes: Access to energy and value added chemicals. Journal: Frontiers in Chemistry https://doi.org/10.3389/fchem.2018.00141.
- 12. Diouri M., Wiedmeier R.D. 2000. Nutritional metabolism of hydrogen peroxide/anhydrous ammonia-treated barley straw in ewe lambs. Journal: Annales de Zootechnie 49, 329–333. https://doi.org/10.1051/animres:2000123.
- 13. Duskaev G.K., Nurzhanov B.S., Rysaev A.F., Rahmatulin S.G. 2021. Changing of the composition of the rumen microflora to improve the efficiency of feed use by ruminants, in: IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755–1315/624/1/012022.
- 14. Ejechi B.O., Obuekwe C.O. 1994. The effect of mixed cultures of some microfungi and basidiomycetes on the decay of three tropical timbers. Journal: International Biodeterioration & Biodegradation 33, 173–185. https://doi.org/10.1016/0964–8305(94)90036–1.
- 15. Ghose T.K. 1987. Measurement of cellulase activities. Journal: Pure and Applied Chemistry 59, 257–268. https://doi.org/10.1351/PAC198759020257/machinereadablecitation/ris.
- 16. Gulecyuz E. 2017. Effects of Some Additives on In Vitro True Digestibility of Wheat and Soybean Straw Pellets. Journal: Open Life Sciences 206–213. https://doi.org/https://doi.org/10.1515/biol-2017–0024.
- 17. Guo Z., Yang Q., Zhou W., Xiao N., Cai J. 2022. Effect of three kinds of biological pretreatments on substrate characteristics and sugar yield by enzymatic hydrolysis of Eichhornia crassipes biomass. Journal: Bioresource Technology Reports 17, 100983. https://doi.org/10.1016/j.biteb.2022.100983
- 18. Hermosilla E., Rubilar O., Schalchli H., da Silva A.S.A., Ferreira-Leitao V., Diez M.C. 2018. Sequential white-rot and brown-rot fungal pretreatment of wheat straw as a promising alternative for complementary mild treatments. Journal: Waste Management 79, 240–250. https://doi.org/10.1016/j.wasman.2018.07.044.
- 19.Isikgor F.H., Becer C.R. 2015. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Journal: Polymer Chemistry 6, 4497–4559. https://doi.org/10.1039/c5py00263j.
- 20. Kalčíková G., Babič J., Pavko A., Gotvajn A.Ž. 2014. Fungal and enzymatic treatment of mature municipal landfill leachate. Journal: Waste Management 34, 798–803. https://doi.org/10.1016/j.wasman.2013.12.017.
- 21. Lee J.S., Yazdan Panah F., Sokhansanj S. 2023. Dry matter loss and heat release due to oxygen depletion in stored wood pellets. Journal: Biomass and Bioenergy 174, 106848. https://doi.org/10.1016/J.BIOMBIOE.2023.106848.
- 22. Martens S.D., Wildner V., Zeyner A., Steinhöfel O. 2023. In vitro ruminal degradability of wheat straw cultivated with white-rot fungi adapted to mushroom farming conditions. Journal: Scientific Reports 13. https://doi.org/10.1038/S41598–023–34747-Y.
- 23. Nayan N., Sonnenberg A.S.M., Hendriks W.H., Cone J.W. 2020. Prospects and feasibility of fungal pretreatment of agricultural biomass for ruminant feeding. Journal: Animal Feed Science and Technology 268, 114577. https://doi.org/10.1016/j.anifeedsci.2020.114577.
- 24. Padam B.S., Tin H.S., Chye F.Y., Abdullah M.I. 2014. Banana by-products: an under-utilized renewable food biomass with great potential. Journal: Journal of Food Science and Technology 51, 3527–3545. https://doi.org/10.1007/s13197–012–0861–2.
- 25. Pant S.R., Kuila A. 2022. Pretreatment of lignocellulosic biomass for bioethanol production. Journal: Advances in Biofuel Technology 177–194. https://doi.org/10.1016/B978–0-323–88427–3.00008–8
- 26. Patil N.D., Tanguy N.R., Yan N. 2016. Lignin Interunit Linkages and Model Compounds, Lignin in Polymer Composites. Elsevier Inc. https://doi.org/10.1016/B978–0-323–35565–0.00003–5.
- 27. Paz A., Karnaouri A., Templis C.C., Papayannakos N., Topakas E. 2020. Valorization of exhausted olive pomace for the production of omega-3 fatty acids by Crypthecodinium cohnii. Journal: Waste Management 118, 435–444. https://doi.org/10.1016/j.wasman.2020.09.011.
- 28. Ravindran R., Jaiswal A.K. 2016. Exploitation of Food Industry Waste for High-Value Products. Journal: Trends in Biotechnology 34, 58–69. https://doi.org/10.1016/J.TIBTECH.2015.10.008
- 29.Rodriguez A., Carnicero A., Perestelo F., De la Fuente G., Milstein O., Falcon M.A. 1994. Effect of Penicillium chrysogenum on lignin transformation. Journal: Applied and Environmental Microbiology 60, 2971–2976. https://doi.org/10.1128/aem.60.8.2971–2976.1994.
- 30. Rodriguez A., Perestelo F., Carnicero A., Regalado V., Perez R., Fuente G., Falcon M.A. 2006. Degradation of natural lignins and lignocellulosic substrates by soil-inhabiting fungi imperfecti. Journal: FEMS Microbiology Ecology 21, 213–219. https://doi.org/10.1111/j.1574–6941.1996.tb00348.x.
- 31. Rouches E., Escudié R., Latrille E., Carrère H. 2019. Solid-state anaerobic digestion of wheat straw: Impact of S/I ratio and pilot-scale fungal pretreatment. Journal: Waste Management 85, 464–476. https://doi.org/10.1016/j.wasman.2019.01.006.
- 32. Sajid S., Resco de Dios V., Nabi F., Lee Y.K., Kaleri A.R. 2022. Pretreatment of rice straw by newly isolated fungal consortium enhanced lignocellulose degradation and humification during composting. Journal: Bioresource Technology 354, 127150. https://doi.org/10.1016/J.BIORTECH.2022.127150
- 33. Shirkavand E., Baroutian S., Gapes D.J., Young B.R. 2016. Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment – A review. Journal: Renewable and Sustainable Energy Reviews https://doi.org/10.1016/j.rser.2015.10.003
- 34. 2017. Macro-micro fungal cultures synergy for innovative cellulase enzymes production and biomass structural analyses. Journal: Renewable Energy 103, 766–773. https://doi.org/10.1016/J.RENENE.2016.11.010.
- 35. Van Kuijk S.J.A., del Río J.C., Rencoret J., Gutiérrez A., Sonnenberg A.S.M., Baars J.J.P., Hendriks W.H., Cone J.W. 2016a. Selective ligninolysis of wheat straw and wood chips by the white-rot fungus Lentinula edodes and its influence on in vitro rumen degradability. Journal: Journal of Animal Science and Biotechnology 7, 1–14. https://doi.org/10.1186/s40104–016–0110-z
- 36. Van Kuijk S.J.A., Sonnenberg A.S.M., Baars J.J.P., Hendriks W.H., Cone J.W. 2016b. The effect of particle size and amount of inoculum on fungal treatment of wheat straw and wood chips. Journal: Jounal of Animal Science and Biotechnology 7, 1–9. https://doi.org/10.1186/s40104–016–0098–4.
- 37. Van Kuijk S.J.A., Sonnenberg A.S.M., Baars J.J.P., Hendriks W.H., Cone J.W. 2015. Fungal treatment of lignocellulosic biomass: Importance of fungal species, colonization and time on chemical composition and in vitro rumen degradability. Journal: Animal Feed Science and Technology 209, 40–50. https://doi.org/10.1016/J.ANIFEEDSCI.2015.07.026.
- 38. Van Kuijk S.J.A., Sonnenberg A.S.M., Baars J.J.P., Hendriks W.H., Cone J.W. 2015a. Fungal treated lignocellulosic biomass as ruminant feed ingredient: A review. Journal: Biotechnology Advances 33, 191–202. https://doi.org/10.1016/j.biotechadv.2014.10.014.
- 39. Van Kuijk S.J.A., Sonnenberg A.S.M., Baars J.J.P., Hendriks W.H., Cone J.W. 2015b. Fungal treated lignocellulosic biomass as ruminant feed ingredient: A review. Journal: Biotechnology Advances https://doi.org/10.1016/j.biotechadv.2014.10.014.
- 40. Van Kuijk S.J.A., Sonnenberg A.S.M., Baars J.J.P., Hendriks W.H., del Río J.C., Rencoret J., Gutiérrez A., de Ruijter N.C.A., Cone J.W. 2017a. Chemical changes and increased degradability of wheat straw and oak wood chips treated with the white rot fungi Ceriporiopsis subvermispora and Lentinula edodes. Journal: Biomass and Bioenergy 105, 381–391. https://doi.org/10.1016/j.biombioe.2017.07.003.
- 41. Van Kuijk S.J.A., Sonnenberg A.S.M., Baars J.J.P., Hendriks W.H., del Río J.C., Rencoret J., Gutiérrez A., de Ruijter N.C.A., Cone J.W. 2017b. Chemical changes and increased degradability of wheat straw and oak wood chips treated with the white rot fungi Ceriporiopsis subvermispora and Lentinula edodes. Journal: Biomass and Bioenergy 105, 381–391. https://doi.org/10.1016/j.biombioe.2017.07.003.
- 42. Vázquez-Vuelvas O.F., Cervantes-Chávez J.A., Delgado-Virgen F.J., Valdez-Velázquez L.L., Osuna-Cisneros R.J. 2021. Fungal bioprocessing of lignocellulosic materials for biorefinery, in: Recent Advancement in Microbial Biotechnology. https://doi.org/10.1016/b978–0-12–822098–6.00009–4.
- 43. Wan C., Li Y. 2012. Fungal pretreatment of lignocellulosic biomass. Journal: Biotechnology Advances 30, 1447–1457. https://doi.org/10.1016/j.biotechadv.2012.03.003
- 44. Wu Z., Zhang M., Wang L., Tu Y., Zhang J., Xie G., Zou W., Li F., Guo K., Li Q., Gao C., Peng L. 2013. Biomass digestibility is predominantly affected by three factors of wall polymer features distinctive in wheat accessions and rice mutants. Journal: Biotechnology for Biofuels 6, 1–14. https://doi.org/10.1186/1754–6834–6-183.
- 45. Yang J., Yue H.-R., Pan L.-Y., Feng J.-X., Zhao S., Suwannarangsee S., Chempreda V., Liu C.-G., Zhao X.-Q. 2023. Fungal strain improvement for efficient cellulase production and lignocellulosic biorefinery: Current status and future prospects. Journal: Bioresource Technology 385, 129449. https://doi.org/10.1016/J.BIORTECH.2023.129449.
- 46. Zhang L., Larsson A., Moldin A., Edlund U. 2022. Comparison of lignin distribution, structure, and morphology in wheat straw and wood. Journal: Industrial Crops and Products 187, 115432. https://doi.org/10.1016/J.INDCROP.2022.115432.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c782a9d5-457e-4843-ac76-c2747fb5c06f