Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We study the problem of finding small universal reversible Turing machines (URTMs) with four symbols or less. Here, we present two models of URTMs: a 24-state 4-symbol URTM, and a 32-state 3-symbol URTM. Both of them are designed so that they can simulate cyclic tag systems, a kind of string rewriting systems that are universal. By converting the 24-state 4-symbol URTM into a 2-symbol machine, we also obtain a 138-state 2-symbol URTM.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
17--29
Opis fizyczny
Bibliogr. 13 poz., tab., wykr.
Twórcy
Bibliografia
- [1] Axelsen, H., Gl¨uck, R.: A simple and efficient universal reversible Turing machines, Proc. LATA 2011, LNCS 6638, Springer-Verlag, 2011.
- [2] Bennett, C. H.: Logical reversibility of computation, IBM J. Res. Dev., 17, 1973, 525–532.
- [3] Cocke, J., Minsky, M.: Universality of tag systems with P = 2, J. Assoc. Comput. Mach., 11, 1964, 15–20.
- [4] Cook, M.: Universality in elementary cellular automata, Complex Syst., 15, 2004, 1–40.
- [5] Kudlek, M., Rogozhin, Y.: A universal Turing machine with 3 states and 9 symbols, Proc. on DLT 2001, LNCS 2295, Springer-Verlag, 2002.
- [6] Minsky, M.: Computation: Finite and Infinite Machines, Prentice-Hall, Englewood Cliffs, NJ, 1967.
- [7] Morita, K.: Reversible computing and cellular automata — A survey, Theoret. Comput. Sci., 395, 2008, 101–131.
- [8] Morita, K.: Reversible Turing machines with a small number of states, Proc. Sixth Workshop on Non-Classical Models of Automata and Applications (NCMA 2014), 2014.
- [9] Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine, Trans. IEICE Japan, E-72, 1989, 223–228.
- [10] Morita, K., Yamaguchi, Y.: A universal reversible Turing machine, Proc. 5th Int. Conf. on Machines, Computations, and Universality, LNCS 4664, Springer-Verlag, 2007.
- [11] Neary, T.,Woods, D.: Four small universal Turing machines, Fundamenta Informaticae, 91, 2009, 123–144.
- [12] Rogozhin, Y.: Small universal Turing machines, Theoret. Comput. Sci., 168, 1996, 215–240.
- [13] Woods, D., Neary, T.: The complexity of small universal Turing machines: A survey, Theoret. Comput. Sci., 410, 2009, 443–450.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c77eae1a-c741-486b-90f5-d24cdfd11370