Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We study the problem of finding small universal reversible Turing machines (URTMs) with four symbols or less. Here, we present two models of URTMs: a 24-state 4-symbol URTM, and a 32-state 3-symbol URTM. Both of them are designed so that they can simulate cyclic tag systems, a kind of string rewriting systems that are universal. By converting the 24-state 4-symbol URTM into a 2-symbol machine, we also obtain a 138-state 2-symbol URTM.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
17--29
Opis fizyczny
Bibliogr. 13 poz., tab., wykr.
Twórcy
Bibliografia
- [1] Axelsen, H., Gl¨uck, R.: A simple and efficient universal reversible Turing machines, Proc. LATA 2011, LNCS 6638, Springer-Verlag, 2011.
- [2] Bennett, C. H.: Logical reversibility of computation, IBM J. Res. Dev., 17, 1973, 525–532.
- [3] Cocke, J., Minsky, M.: Universality of tag systems with P = 2, J. Assoc. Comput. Mach., 11, 1964, 15–20.
- [4] Cook, M.: Universality in elementary cellular automata, Complex Syst., 15, 2004, 1–40.
- [5] Kudlek, M., Rogozhin, Y.: A universal Turing machine with 3 states and 9 symbols, Proc. on DLT 2001, LNCS 2295, Springer-Verlag, 2002.
- [6] Minsky, M.: Computation: Finite and Infinite Machines, Prentice-Hall, Englewood Cliffs, NJ, 1967.
- [7] Morita, K.: Reversible computing and cellular automata — A survey, Theoret. Comput. Sci., 395, 2008, 101–131.
- [8] Morita, K.: Reversible Turing machines with a small number of states, Proc. Sixth Workshop on Non-Classical Models of Automata and Applications (NCMA 2014), 2014.
- [9] Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine, Trans. IEICE Japan, E-72, 1989, 223–228.
- [10] Morita, K., Yamaguchi, Y.: A universal reversible Turing machine, Proc. 5th Int. Conf. on Machines, Computations, and Universality, LNCS 4664, Springer-Verlag, 2007.
- [11] Neary, T.,Woods, D.: Four small universal Turing machines, Fundamenta Informaticae, 91, 2009, 123–144.
- [12] Rogozhin, Y.: Small universal Turing machines, Theoret. Comput. Sci., 168, 1996, 215–240.
- [13] Woods, D., Neary, T.: The complexity of small universal Turing machines: A survey, Theoret. Comput. Sci., 410, 2009, 443–450.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c77eae1a-c741-486b-90f5-d24cdfd11370