Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
New materials used in various industries require sufficiently high mechanical properties, fine-grained structure and ease of metal forming while minimizing production costs. For this reason, work is being carried out to develop new groups of alloys that make it possible to increase the strength of the obtained components while reducing their weight, and thus reducing production costs. This article focuses on two aluminium-based alloys with different content of alloying additives: copper and magnesium i.e., AlCu3Mg3 and AlCu4.5Mg6, which were produced by metallurgical synthesis. The as-cast alloys were characterized for their basic physical, mechanical and electrical properties and were subjected to structural analysis. In the next stage, the alloys were modified with 100, 500, 1000 and 2000 ppm of titanium and then their hardness, electrical conductivity and density were tested. Samples were also subjected to microstructural analysis. The obtained results allowed to examine the evolution of the AlCuMg alloy properties depending on the content of alloy additives and the amount of used modifier.
Wydawca
Czasopismo
Rocznik
Tom
Strony
37--48
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Department of Metal Working and Psychical Metallurgy of Non-Ferrous Metals, 30 Mickiewicza Av., Krakow, 30-059 Poland
autor
- AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Department of Metal Working and Psychical Metallurgy of Non-Ferrous Metals, 30 Mickiewicza Av., Krakow, 30-059 Poland
autor
- AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Department of Metal Working and Psychical Metallurgy of Non-Ferrous Metals, 30 Mickiewicza Av., Krakow, 30-059 Poland
autor
- AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Department of Metal Working and Psychical Metallurgy of Non-Ferrous Metals, 30 Mickiewicza Av., Krakow, 30-059 Poland
autor
- AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Department of Metal Working and Psychical Metallurgy of Non-Ferrous Metals, 30 Mickiewicza Av., Krakow, 30-059 Poland
autor
- AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Department of Metal Working and Psychical Metallurgy of Non-Ferrous Metals, 30 Mickiewicza Av., Krakow, 30-059 Poland
Bibliografia
- [1] J. Szajnar, T. Wróbel, Inoculation of aluminium with titanium and boron addition, J. Achiev. Mater. Manuf. Eng. 23 (2007) 51–54.
- [2] E. Fraś, Krystalizacja metali, Wydawnictwa Naukowo-Techniczne, Warszawa, 2003.
- [3] R. Romankiewicz, F., Romankiewicz, Modification Aluminium with AlTi5C0,1, Arch. Odlew. 4 (2004) 189–196.
- [4] R. Winfried, F. Romankiewicz, Modyfikacja aluminium dodatkiem AlTi5BO,2, Arch. Technol. Masz. i Autom. 20 (2000) 147–153.
- [5] G.K. Sigworth, T.A. Kuhn, Grain refinement of aluminum casting alloys, Int. J. Met. 1 (2007) 31–40. https://doi.org/10.1007/BF03355416.
- [6] T.S. Krishnan, P.K. Rajagopalan, B.R. Gund, J. Krishnan, D.K. Bose, Development of Al-5%Ti-1%B master alloy, J. Alloys Compd. 269 (1998) 138–140. https://doi.org/10.1016/S0925-8388(98)00217-5.
- [7] Y. Birol, The performance of Al-Ti-C grain refiners in twin-roll casting of aluminium foilstock, J. Alloys Compd. 430 (2007) 179–187. https://doi.org/10.1016/j.jallcom.2006.05.027.
- [8] X. Wang, The formation of AlB2 in an Al-B master alloy, J. Alloys Compd. 403 (2005) 283–287. https://doi.org/10.1016/j.jallcom.2005.04.204.
- [9] Y. Birol, Grain refining efficiency of Al-Ti-C alloys, J. Alloys Compd. 422 (2006) 128–131. https://doi.org/10.1016/j.jallcom.2005.11.059.
- [10] H. Akdogan, A., Akar, The effect of the copper 2-8% on the corrosion of Al-Cu Alloys, in: XVI IMEKO World Congress 2000, Vienna, n.d.: pp. 25–28.
- [11] H. Yang, T. Gao, H. Zhang, J. Nie, X. Liu, Enhanced age-hardening behavior in Al–Cu alloys induced by in-situ synthesized TiC nanoparticles, J. Mater. Sci. Technol. 35 (2019) 374–382. https://doi.org/10.1016/j.jmst.2018.09.029.
- [12] H.N. Panchal, V.J. Rao, Influence of Mg on Micro-Mechanical Behaviour of as Cast Al–Mg System, Phys. Met. Metallogr. 120 (2019) 881–887. https://doi.org/10.1134/S0031918X19090126.
- [13] J.R. Davis, ASM Specialty Handbook: Aluminum and Aluminum Alloys, 1993.
- [14] W.T. Jinan, A.F. Padilha, Microstructure evolution during the extrusion of a 6351 aluminum alloy tube, Rev. Esc. Minas. 72 (2019) 479–484. https://doi.org/10.1590/0370-44672018720174.
- [15] Z. hao Zhang, J. Xue, Y. bin Jiang, F. Jin, Effect of pre-annealing treatment on the microstructure and mechanical properties of extruded Al–Zn–Mg–Cu alloy bars, Int. J. Miner. Metall. Mater. 24 (2017). https://doi.org/10.1007/s12613-017-1521-3.
- [16] K. Przybyłowicz, Metaloznawstwo, Wydawnictwa Naukowo-Techniczne, Warszawa, 1999.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c778cdc9-555d-4408-ae5c-d13a6b9320d1