PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low cost, high accuracy real-time simulation used for rapid prototyping and testing control algorithms on example of BLDC motor

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the simulation of a BLDC motor and its closed control system in FPGA. The simulation is based on a mathematical model of the motor, including the electromagnetic torque, phase currents, back electromotive force, etc. In order to ensure calculation precision, the equations describing the motor were solved using a floating point representation of real numbers, and a small step of numerical calculations of 1 μs was assumed. The time step selection methodology has been discussed in detail. The motor model was executed with the use of Textual Programming Languages (with HDL codes).
Słowa kluczowe
Rocznik
Strony
463--479
Opis fizyczny
Bibliogr. 30 poz., fig., tab., wz.
Twórcy
  • Department of Power Electronics and Energy Control Systems, AGH-University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] Dziadecki A., Grzegorski J., Skotniczny J., Sensorless control system of SRM drive, Przegląd Elektrotechniczny 88(8): 317-322 (2012).
  • [2] Chun T. W., Tran Q. V., Lee H. H., Kim H. G., Sensorless Control of BLDC Motor Drive for an Automotive Fuel Pump Using a Hysteresis Comparator, IEEE Trans. on Power Electronics 29(3): 1382-1391 (2014).
  • [3] Nikam S. P., Rallabandi V., Fernandes B. G., A High-Torque-Density Permanent-Magnet Free Motor for in-Wheel Electric Vehicle Application, IEEE Trans. on Industrial Application 48(6): 2287-2295 (2012).
  • [4] Joice C. S., Paranjothi S. R., Kumar V. J. S., Digital Control Strategy for Four Quadrant Operation of Three Phase BLDC Motor With Load Variations, IEEE Trans. on Industrial Informatics 9(2): 974-882 (2013).
  • [5] Berrached D., Tilmatine A., Miloua F., Bengrit M., Modeling of a two stages electrostatic air precipitation process using response surface modeling, Archives of Electrical Engineering (63): 609-619 (2014).
  • [6] Gawrylczyk K. M., Banaszak S., Modeling of frequency response of transformer winding with axial deformations, Archives of Electrical Engineering 63(4): 5-17 (2014).
  • [7] Ta M.C., Dufour C., Real-time simulation and control of reluctance motor drives for high speed operation with reduced torque ripple, IECON - 37th Annual Conference on IEEE Industrial Electronics Society, pp. 4176-4181 (2011).
  • [8] Xu S., Liu X., Sun W., Modelling of power metal-oxide semiconductor field-effect transistor for the analysis of switching characteristics in half-bridge converters, IET Circuits, Devices & Systems 4(4): 327-336 (2010).
  • [9] Jia K., Bohlin G., Enohnyaket M., Thottappillil R., Modelling an AC motor with high accuracy in a wide frequency range, IET Electric Power Applications 7(2): 116-122 (2012).
  • [10] Dufour C., Belanger J., Lapointe V., FPGA-based ultra-low latency HIL fault testing of a permanent magnet motor drive using RT-LABXSG, Proc. IEEE Int. Power Sys. Tech. Conf., pp. 1-7 (2008).
  • [11] Dong L., Guang-fu T., Zhi-yuan H., Hui P., A New Type Real-Time Simulation Platform for Modular Multilevel Converter Based HVDC, Power and Energy Engineering Conference (APPEEC), pp. 1-5 (2012).
  • [12] Olivieri C., Di Leonardo L., Fabri G., Tursini M., A DSP-based real-time simulation equipment for fast motor control development, Education and Research Conference (EDERC) 5th European DSP, pp. 208-212 (2012).
  • [13] Kokenyesi T., Varjasi I., Comparison of real-time simulation methods for power electronic applications, Energy 4th International Youth Conference on (IYCE), pp. 1-5 (2013).
  • [14] Montoya L. A., Montenegro D., Ramos G., Adaptive protection testbed using real time and hardware-in-the-loop simulation”, PowerTech (POWERTECH), Grenoble, pp. 1-4 (2013).
  • [15] Bazargan D., Filizadeh S., Hardware-in-loop real-time simulation of a battery storage system in a wind generation scheme, Electric Power and Energy Conversion Systems (EPECS), 3rd International Conference on, pp. 1-6 (2013).
  • [16] Wang C., Li W., Belanger J., Real-time and faster-than-real-time simulation of Modular Multilevel Converters using standard multi-core CPU and FPGA chips, Industrial Electronics Society (IECON), 39th Annual Conference of the IEEE, pp. 5405-5411 (2013).
  • [17] Hanif M., Khadkikar V., Xiao W., Kirtley J. L., Two Degrees of Freedom Active Damping Technique for LCL Filter-Based Grid Connected PV Systems, IEEE Trans. on Industrial Electronics 61(6): 2795-2803 (2014).
  • [18] Stala R., Stawiarski L., Real-time models of PV arrays implemented in FPGAs, Przeglad Elektrotechniczny 86(2): 358-363 (2010).
  • [19] Pirog S., Baszynski M., Single phase, three cells AC/DC converter with sinusoidal current source, Przegląd Elektrotechniczny 85(3): 42-47 (2009).
  • [20] Chen Y., Dinavahi V., Digital Hardware Emulation of Universal Machine and Universal Line Models for Real-Time Electromagnetic Transient Simulation, IEEE Trans. on Industrial Electronics 52(59): 1300-1309 (2012).
  • [21] Myaing A., Dinavahi V., FPGA-Based Real-Time Emulation of Power Electronic Systems With Detailed Representation of Device Characteristics, IEEE Trans. on Industrial Electronics 58(1): 358-368 (2011).
  • [22] Sohn J., Swartzlander E. E., Improved Architectures for a Fused Floating-Point Add-Subtract Unit, IEEE Trans. on Circuits and Systems 59(10): 2285-2291 (2012).
  • [23] Chong Y. J., Parameswaran S., Configurable Multimode Embedded Floating-Point Units for FPGAs, IEEE Trans. on Very Large Scale Integration (VLSI) Systems 19(11): 2033-2044 (2011).
  • [24] Menghal P. M., Laxmi A. J., Real time simulation: Recent progress & challenges, Power, Signals, Controls and Computation (EPSCICON) International Conference on, pp. 1-6 (2012).
  • [25] Hasanzadeh A., Edrington C. S., Stroupe N., Bevis T., Real-Time Emulation of a High-Speed Microturbine Permanent-Magnet Synchronous Generator Using Multiplatform Hardware-in-the-Loop Realization, IEEE Trans. on Industrial Electronics 61(6): 3109-3118 (2014).
  • [26] Myaing A., Faruque M. O., Dinavahi1 V., Dufour C., Comparison of insulated gate bipolar transistor models for FPGA-based real-time simulation of electric drives and application guideline, IET Power Electronics 5(3): 293-303 (2011)
  • [27] Chua L. O, Lin PenMin, Computer-aided analysis of electronic circuits: algorithms and computational techniques, Prentice-Hall (1975).
  • [28] Baszynski M., Pirog S., A Novel Speed Measurement Method for a High-Speed BLDC Motor Based on the Signals From the Rotor Position Sensor, IEEE Trans on Industrial Informatics 10(1): 84-91 (2014).
  • [29] http://www.altera.com/literature/hb/qts/qts_qii51013.pdf, accessed April 2015.
  • [30] Gurumurthy S. R., Agarwal V., Sharma A., Optimal energy harvesting from a high-speed brushless DC generator-based flywheel energy storage system, IET Electric Power Applications 7(9): 693-700 (2013).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c7752398-5b08-4e67-bb3d-5357594df3db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.