Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In 2015, Srivastava and Singh [S. K. Srivastava and U. Singh, Trigonometric approximation of periodic functions belonging to weighted Lipschitz class W(Lp , Ψ(t), β), in: Function Spaces in Analysis, Contemp. Math. 645, American Mathematical Society, Providence (2015), 283-291] determined the order of approximation of periodic functions belonging to W(Lp , Ψ(u), β)-class, which is a weighted version of Lip(ω(u), p)-class with weight function sinβp(y/2) through matrix means of their trigonometric Fourier series. It is a well-known fact that the product summability methods are stronger than the single summability methods, and they can approximate a wider class of functions. Therefore, in this article, an effort is made to determine the degree of approximation for periodic functions from the same weighted Lipschitz class W(Lp, Ψ(u), β), p ≥ 1, using Cδ.T-means of their trigonometric Fourier series.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
251--259
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
- Department of Mathematics, Sardar Vallabhbhai National Institute of Technology, Surat-395007, Gujarat, India
- Department of Mathematics, Sardar Vallabhbhai National Institute of Technology, Surat-395007, Gujarat, India
Bibliografia
- [1] A. A. Das, S. K. Paikray, T. Pradhan and H. Dutta, Approximation of signals in the weighted Zygmund class via Euler-Hausdorff product summability mean of Fourier series, J. Indian Math. Soc. (N. S.) 87 (2020), no. 1-2, 22-36.
- [2] U. De˜ger, On approximation to functions in the W(Lp , ξ(t)) class by a new matrix mean, Novi Sad J. Math. 46 (2016), no. 1, 1-14.
- [3] Deepmala and L.-I. Piscoran, Approximation of signals (functions) belonging to certain Lipschitz classes by almost Riesz means of its Fourier series, J. Inequal. Appl.2016 (2016), Paper No. 163.
- [4] S. Devaiya and S. K. Srivastava, Approximation of functions and conjugate of functions using product mean (E, q)(E, q)(E, q), Palest. J. Math. 11 (2022), 29-37.
- [5] S. Z. Jafarov, On approximation of a weighted Lipschitz class functions by means tn(h; x), Nβn(h; x) and Rβn(h; x) of Fourier series, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. Math. 40 (2020), 118-129.
- [6] H. H. Khan and G. Ram, On the degree of approximation, Facta Univ. Ser. Math. Inform. 18 (2003), 47-57.
- [7] X. Z. Krasniqi and Deepmala, On approximation of functions belonging to some classes of functions by (N, pn , qn)(E, θ) means of conjugate series of its Fourier series, Khayyam J. Math. 6 (2020), no. 1, 73-86.
- [8] J. K. Kushwaha, L. Rathour, V. N. Mishra and K. Kumar, Estimation of degree of approximation of functions belonging to Lipschitz class by Nörlund Cesãro product summability means, Ann. Fuzzy Math. Inform. 24 (2022), no. 3, 239-252.
- [9] H. K. Nigam and M. Hadish, On approximation of function in generalized Zygmund class using Cη T operator, J. Math. Inequal. 14 (2020), no. 1, 273-289.
- [10] T. Pradhan, S. K. Paikray and U. Misra, Approximation of signals belonging to generalized Lipschitz class using (N, pn , qn)(E, s)-summability mean of Fourier series, Cogent Math. 3 (2016), Article ID 1250343.
- [11] E. Z. Psarakis and G. V. Moustakides, An L2-based method for the design of 1-D zero phase FIR digital filters, IEEE Trans. Circuits Syst. I Fund. Theory Appl. 44 (1997), no. 7, 591-601.
- [12] A. Rathore and U. Singh, On the degree of approximation of functions in a weighted Lipschitz class by almost matrix summability method, J. Anal. 28 (2020), no. 1, 21-33.
- [13] U. Singh, On the trigonometric approximation of functions in a weighted Lipschitz class, J. Anal. 29 (2021), no. 1, 325-335.
- [14] U. Singh and A. Rathore, A note on the degree of approximation of functions belonging to certain Lipschitz class by almost Riesz means, Stud. Univ. Babeş-Bolyai Math. 63 (2018), no. 3, 371-379.
- [15] U. Singh and S. K. Srivastava, Approximation of conjugate of functions belonging to weighted Lipschitz class W(Lp , ξ(t)) by Hausdorff means of conjugate Fourier series, J. Comput. Appl. Math. 259 (2014), 633-640.
- [16] U. Singh and S. K. Srivastava, Trigonometric approximation of functions belonging to certain Lipschitz classes by C1 ⋅ T operator, Asian-Eur. J. Math. 7 (2014), no. 4, Article ID 1450064.
- [17] S. Sonker and P. Sangwan, Approximation of Fourier and its conjugate series by triple Euler product summability, J. Phys. Conf. Ser. 1770 (2021), Article ID 012003.
- [18] S. K. Srivastava and S. Devaiya, Error estimation of signals (functions) belonging to class W(Lp , Ψ(t), β) for hump matrices, AIP Conf. Proc. 2435 (2022), Article ID 020043.
- [19] S. K. Srivastava and U. Singh, Trigonometric approximation of periodic functions belonging to Lip(ω(t), p)-class, J. Comput. Appl. Math. 270 (2014), 223-230.
- [20] S. K. Srivastava and U. Singh, Trigonometric approximation of periodic functions belonging to weighted Lipschitz class W(Lp , Ψ(t), β), in: Function Spaces in Analysis, Contemp. Math. 645, American Mathematical Society, Providence (2015), 283-291.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c76c6c97-0c2f-445a-ad43-32b50b2ac634
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.