PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Trigonometric approximation of signals (functions) belonging to certain Lipschitz spaces using Cδ.T operator

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In 2015, Srivastava and Singh [S. K. Srivastava and U. Singh, Trigonometric approximation of periodic functions belonging to weighted Lipschitz class W(Lp , Ψ(t), β), in: Function Spaces in Analysis, Contemp. Math. 645, American Mathematical Society, Providence (2015), 283-291] determined the order of approximation of periodic functions belonging to W(Lp , Ψ(u), β)-class, which is a weighted version of Lip(ω(u), p)-class with weight function sinβp(y/2) through matrix means of their trigonometric Fourier series. It is a well-known fact that the product summability methods are stronger than the single summability methods, and they can approximate a wider class of functions. Therefore, in this article, an effort is made to determine the degree of approximation for periodic functions from the same weighted Lipschitz class W(Lp, Ψ(u), β), p ≥ 1, using Cδ.T-means of their trigonometric Fourier series.
Wydawca
Rocznik
Strony
251--259
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
  • Department of Mathematics, Sardar Vallabhbhai National Institute of Technology, Surat-395007, Gujarat, India
  • Department of Mathematics, Sardar Vallabhbhai National Institute of Technology, Surat-395007, Gujarat, India
Bibliografia
  • [1] A. A. Das, S. K. Paikray, T. Pradhan and H. Dutta, Approximation of signals in the weighted Zygmund class via Euler-Hausdorff product summability mean of Fourier series, J. Indian Math. Soc. (N. S.) 87 (2020), no. 1-2, 22-36.
  • [2] U. De˜ger, On approximation to functions in the W(Lp , ξ(t)) class by a new matrix mean, Novi Sad J. Math. 46 (2016), no. 1, 1-14.
  • [3] Deepmala and L.-I. Piscoran, Approximation of signals (functions) belonging to certain Lipschitz classes by almost Riesz means of its Fourier series, J. Inequal. Appl.2016 (2016), Paper No. 163.
  • [4] S. Devaiya and S. K. Srivastava, Approximation of functions and conjugate of functions using product mean (E, q)(E, q)(E, q), Palest. J. Math. 11 (2022), 29-37.
  • [5] S. Z. Jafarov, On approximation of a weighted Lipschitz class functions by means tn(h; x), Nβn(h; x) and Rβn(h; x) of Fourier series, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. Math. 40 (2020), 118-129.
  • [6] H. H. Khan and G. Ram, On the degree of approximation, Facta Univ. Ser. Math. Inform. 18 (2003), 47-57.
  • [7] X. Z. Krasniqi and Deepmala, On approximation of functions belonging to some classes of functions by (N, pn , qn)(E, θ) means of conjugate series of its Fourier series, Khayyam J. Math. 6 (2020), no. 1, 73-86.
  • [8] J. K. Kushwaha, L. Rathour, V. N. Mishra and K. Kumar, Estimation of degree of approximation of functions belonging to Lipschitz class by Nörlund Cesãro product summability means, Ann. Fuzzy Math. Inform. 24 (2022), no. 3, 239-252.
  • [9] H. K. Nigam and M. Hadish, On approximation of function in generalized Zygmund class using Cη T operator, J. Math. Inequal. 14 (2020), no. 1, 273-289.
  • [10] T. Pradhan, S. K. Paikray and U. Misra, Approximation of signals belonging to generalized Lipschitz class using (N, pn , qn)(E, s)-summability mean of Fourier series, Cogent Math. 3 (2016), Article ID 1250343.
  • [11] E. Z. Psarakis and G. V. Moustakides, An L2-based method for the design of 1-D zero phase FIR digital filters, IEEE Trans. Circuits Syst. I Fund. Theory Appl. 44 (1997), no. 7, 591-601.
  • [12] A. Rathore and U. Singh, On the degree of approximation of functions in a weighted Lipschitz class by almost matrix summability method, J. Anal. 28 (2020), no. 1, 21-33.
  • [13] U. Singh, On the trigonometric approximation of functions in a weighted Lipschitz class, J. Anal. 29 (2021), no. 1, 325-335.
  • [14] U. Singh and A. Rathore, A note on the degree of approximation of functions belonging to certain Lipschitz class by almost Riesz means, Stud. Univ. Babeş-Bolyai Math. 63 (2018), no. 3, 371-379.
  • [15] U. Singh and S. K. Srivastava, Approximation of conjugate of functions belonging to weighted Lipschitz class W(Lp , ξ(t)) by Hausdorff means of conjugate Fourier series, J. Comput. Appl. Math. 259 (2014), 633-640.
  • [16] U. Singh and S. K. Srivastava, Trigonometric approximation of functions belonging to certain Lipschitz classes by C1 ⋅ T operator, Asian-Eur. J. Math. 7 (2014), no. 4, Article ID 1450064.
  • [17] S. Sonker and P. Sangwan, Approximation of Fourier and its conjugate series by triple Euler product summability, J. Phys. Conf. Ser. 1770 (2021), Article ID 012003.
  • [18] S. K. Srivastava and S. Devaiya, Error estimation of signals (functions) belonging to class W(Lp , Ψ(t), β) for hump matrices, AIP Conf. Proc. 2435 (2022), Article ID 020043.
  • [19] S. K. Srivastava and U. Singh, Trigonometric approximation of periodic functions belonging to Lip(ω(t), p)-class, J. Comput. Appl. Math. 270 (2014), 223-230.
  • [20] S. K. Srivastava and U. Singh, Trigonometric approximation of periodic functions belonging to weighted Lipschitz class W(Lp , Ψ(t), β), in: Function Spaces in Analysis, Contemp. Math. 645, American Mathematical Society, Providence (2015), 283-291.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c76c6c97-0c2f-445a-ad43-32b50b2ac634
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.