Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Transparent Yb3+/Er3+ glass-ceramic was successfully obtained by the extrusion method. The extrusion of oxyfluoride tellurite-germanate glass co-doped with Yb3+ and Er3+ ions at 520˚C resulted in the formation of Ba0.75Er0.25F2.25 nanocrystals, leading to an increase in the upconversion (UC) emission intensity of 35 times in glass-ceramic with respect to the glass. The glass to glass-ceramic transition was confirmed by X-ray diffraction (XRD) and Transmission electron microscope (TEM). Also, the structural changes that occurred during crystallization were assessed using Fourier-transform infrared (FTIR) spectroscopy. Furthermore, the pump power and temperature UC emission dependence of glass and glass-ceramic under 976 nm laser excitation were investigated in detail. The assessments showed that i) two-phonons are involved in the UC process and ii) the temperature has a significant influence over it. The Yb3+/Er3+ codoped glass-ceramic shows relatively high Sα and Sr values in a wide temperature range from 300 to 573 K, presenting the maximal Sα value of 3.50 × 10-3 at 573 K and the maximal Sr value of 6.30 × 10-3 at 364 K. These results suggest that the glass-ceramic is a good candidate for optical applications such as luminescent thermometry.
Czasopismo
Rocznik
Tom
Strony
37--50
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr., wzory
Twórcy
autor
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Krakow, Poland
autor
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Krakow, Poland
autor
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Krakow, Poland
autor
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Krakow, Poland
autor
- Department of Physics, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. Instituto Politécnico Nacional 2508, Mexico City, Mexico
autor
- Faculty of Electrical Engineering, Bialystok University of Technology, 45D Wiejska Street, 15-351 Bialystok, Poland
autor
- Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-007 Katowice, Poland
autor
- Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-007 Katowice, Poland
autor
- Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-007 Katowice, Poland
autor
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Krakow, Poland
Bibliografia
- [1] Wang, Y., Li, W., Pan, L., Yu, J., & Zhang, R. (2013). Optimization of concentration and length of laser medium in diode-end-pumped solid-state lasers considering energy-transfer-upconversion effects. Optik (Stuttg), 124, 1445-1449. https://doi.org/10.1016/j.ijleo.2012.03.071
- [2] Jia, Y., Yao, Y., Wang, S., Ren, Y., Zhao, X., & Chen, F. (2021). Dual-color upconversion luminescence emission from Er:LiNbO3 on-chip ridge waveguides. Results in Physics, 27, 104526. https://doi.org/10.1016/j.rinp.2021.104526
- [3] Mushtaque, S. G. M., Kadam, A. R., & Dhoble, S. J. (2023). High color purity and color tunability in Sm3+/Eu3+ activated/ co-activated Sr6Ca4(PO4)6F2 phosphor for WLED and display devices application. Journal of Molecular Structure, 1274, 134510. https://doi.org/10.1016/j.molstruc.2022.134510
- [4] Li, S., Li, Y., Sun, X., Li, Y., Deng, F., & Tao, X. (2023). Hole transport layer-free carbon-based perovskite solar cells with high-efficiency up to 17.49% in air: From-bottom-to-top perovskite interface modification. Chemical Engineering Journal, 455, 140727. https://doi.org/10.1016/j.cej.2022.140727
- [5] Xu, R., Cao, H., Lin, D., Yu, B., & Qu, J. (2022). Lanthanide-doped upconversion nanoparticles for biological super-resolution fluorescence imaging. Cell Reports Physical Science, 3, 100922. https://doi.org/10.1016/j.xcrp.2022.100922
- [6] Yang, J., Zu, L., Li, G., Zhang, C., Ge, Z., Wang, W., Wang, X., Liu, B., Xi, N., & Liu, L. (2023). Upconversion optogenetics-driven biohybrid sensor for infrared sensing and imaging. Acta Biomater., 158, 747-758. https://doi.org/10.1016/j.actbio.2023.01.017
- [7] Zhou, J., Cai, H., Ren, Y., Li, S., Jiang, C., Lv, Z., Wang, T., Qu, G., Cai, P., Tan, Y., Shi, J., Xin, M., Miao, X., & Liu, Q. (2023). Effect of micro-range transmission on the imaging sharpness of near-infrared upconversion thin-film silicon-based detectors. Optics Communications, 529, 129108. https://doi.org/10.1016/j.optcom.2022.129108
- [8] Zhang, Y., Guo, Y., Zheng, X., Wang, P., & Liu, H. (2023). Bright upconversion luminescence performance of Yb3+/Tm3+/Gd3+/Er3+ doped AWO4 (A=Sr or Ca) phosphor for optical temperature sensor. Physica B: Condensed Matter, 649, 414467. https://doi.org/10.1016/j.physb.2022.414467
- [9] Klinkov, V., Aseev, V., Semencha, A., & Tsimerman, E. (2018). Temperature sensor based on upconversion luminescence of Er3+-doped fluoroaluminate glasses. Sensors and Actuators A: Physical, 277, 157-162. https://doi.org/10.1016/j.sna.2018.04.048
- [10] Wang, Q., Wen, J., Zheng, J., Xia, Q., Wei, C., Huang, X., Mu, Z., & Wu, F. (2022). Exploration of up-conversion thermal enhancement mechanism and application on temperature sensing of Sc2W3O12: Yb3+, Er3+ materials. Journal of Luminescence, 252, 119306. https://doi.org/10.1016/j.jlumin.2022.119306
- [11] Tekın, H., Süsoy, G., Issa, S. A., Ene, A., ALMisned, G., Rammah, Y. S., Ali, F. T., Algethami, M., & Zakaly, H. M. (2022). Heavy metal oxide (HMO) glasses as an effective member of glass shield family: A comprehensive characterization on gamma ray shielding properties of various structures. Journal of Materials Research and Technology, 18, 231-244. https://doi.org/10.1016/j.jmrt.2022.02.074
- [12] Tang, J., Sun, M., Huang, Y., Gou, J., Zhang, Yu., Li, G., Li, Y., Man, Y., Yang, J. (2017). Study on optical properties and upconversion luminescence of Er3+/Yb3+ co-doped tellurite glass for highly sensitive temperature measuring. Optical Materials Express, 7, 3238-3250. https://doi.org/10.1364/OME.7.003238
- [13] Chen, R., Tian, Y., Li, B., Wang, F., Jing, X., Zhang, J., & Xu, S. (2015). 2 μm fluorescence of Ho3+:5I7 →5I8 transition sensitized by Er3+ in tellurite germanate glasses. Optical Materials, 49, 116-122. https://doi.org/10.1016/j.optmat.2015.09.003
- [14] Hou, G., Zhang, C., Fu, W., Li, G., Xia, J., & Ping, Y. (2020). Broadband mid-infrared 2.0 μm and 4.1 μm emission in Ho3+/Yb3+ co-doped tellurite-germanate glasses. Journal of Luminescence, 217, 116769. https://doi.org/10.1016/j.jlumin.2019.116769
- [15] Zhang, Y., Lu, C., Feng, Y., Sun, L., Ni, Y., & Xu, Z. (2011). Effects of GeO2 on the thermal stability and optical properties of Er3+/Yb3+-codoped oxyfluoride tellurite glasses. Materials Chemistry and Physics, 126, 786-790. https://doi.org/10.1016/j.matchemphys.2010.12.043
- [16] Cruz, M.E., Li, J., Gorni, G., Durán, A., Mather, G.C., Balda, R., Fernández, J., & Castro, Y. (2021). Nd3+doped- SiO2-KLaF4 oxyfluoride glass-ceramics prepared by sol-gel. Journal of Luminescence, 235. 118035. https://doi.org/10.1016/j.jlumin.2021.118035
- [17] Nguyen, H., Tuomisto, M., Oksa, J., Salminen, T., Lastusaari, M., & Petit, L. (2017). Upconversion in low rare-earth concentrated phosphate glasses using direct NaYF4:Er3 +, Yb3 + nanoparticles doping. Scripta Materialia, 139, 130-133. https://doi.org/10.1016/j.scriptamat.2017.06.050
- [18] Ojha, N., Laihinen, T., Salminen, T., Lastusaari, M., & Petit, L. (2018). Influence of the phosphate glass melt on the corrosion of functional particles occurring during the preparation of glass-ceramics. Ceramics International, 44(10), 11807-11811. https://doi.org/10.1016/j.ceramint.2018.03.267
- [19] Lahti, V., Ojha, N., Vuori, S., Lastusaari, M., & Petit, L. (2021). Preparation of glass-based composites with green upconversion and persistent luminescence using modified direct doping method. Materials Chemistry and Physics, 274, 125164. https://doi.org/10.1016/j.matchemphys.2021.125164
- [20] Ojha, N., Nguyen, H., Laihinen, T., Salminen, T., Lastusaari, M., & Petit, L. (2018). Decomposition of persistent luminescent microparticles in corrosive phosphate glass melt. Corrosion Science, 135, 207-214. https://doi.org/10.1016/j.corsci.2018.02.050
- [21] Cao, J., Lancry, M., Brisset, F., Mazerolles, L., Saint-Martin, R., & Poumellec, B. (2019). Femtosecond Laser-Induced Crystallization in Glasses: Growth Dynamics for Orientable Nanostructure and Nanocrystallization. Crystal Growth & Design, 19, 2189-2205. https://doi.org/10.1021/acs.cgd.8b01802
- [22] Blanc, W., Lu, Z., Robine, T., Pigeonneau, F., Molardi, C., & Tosi, D. (2022). Nanoparticles in optical fiber, issue and opportunity of light scattering [Invited]. Optical Materials Express, 12(7), 2635. https://doi.org/10.1364/ome.462822
- [23] Cahoon, M.A., Meehan, B., Hawkins, T.W., McMillen, C., Antonick, P., Riman, R.E., Dragic, P.D., Digonnet, M.J.F., & Ballato, J. (2022). (Invited) On the evolution of nanoparticles in nanoparticle-doped optical fibers. Optical Materials: X, 16, 100202. https://doi.org/10.1016/j.omx.2022.100202
- [24] Blanc, W., Gyu Choi, Y., Zhang, X., Nalin, M., Richardson, K.A., Righini, G.C., Ferrari, M., Jha, A., Massera, J., Jiang, S., Ballato, J., & Petit, L. (2023). The past, present and future of photonic glasses: A review in homage to the United Nations International Year of Glass 2022. Progress in Materials Science, 134, 101084. https://doi.org/10.1016/j.pmatsci.2023.101084
- [25] Leśniak, M., Mach, G., Starzyk, B., Sadowska, K., Ragiń, T., Żmojda, J., Kochanowicz, M., Kuwik, M., Miluski, P., Jiménez, G.L., Baranowska, A., Dorosz, J., Pisarski, W., Pisarska, J., Olejniczak, Z., & Dorosz, D. (2022). The Effect of Fluorides (BaF2, MgF2, AlF3) on Structural and Luminescent Properties of Er3+-Doped Gallo-Germanate Glass. Materials, 15, 5230. https://doi.org/10.3390/ma15155230
- [26] Aguilar-Frutis, M.A., Jiménez, G.L., Padilla-Rosales, I., Alarcón-Flores, G., Falcony, C., Cabañas-Moreno, J.G. (2017). Near UV excitable Eu-doped alumina nanophosphors synthesized by the microwave assisted solvothermal technique. Materials Research Express, 4. 125007. https://doi.org/10.1088/2053-1591/aa9b67
- [27] Koroleva, O.N., Shtenberg, M. V., & Ivanova, T.N. (2019). The structure of potassium germanate glasses as revealed by Raman and IR spectroscopy. Journal of Non-Crystalline Solids, 510, 143-150. https://doi.org/10.1016/j.jnoncrysol.2019.01.017
- [28] Liu, Y., Lu, Z., Xu, J., & Guo, T. (2020). Studies on the influence of structure units on the state of ytterbium ions in TeO2-based glasses. Journal of Materials Research, 35, 422-429. https://doi.org/10.1557/jmr.2020.28
- [29] Yan, J., Zhao, T., Shi, N., Zhan, H., Ren, J., Zhang, Y., & Yue, Y. (2022). Impact of silicon doping on the structure and crystallization of a vanadium-tellurite glass. Journal of Non-Crystalline Solids, 589, 121651. https://doi.org/10.1016/j.jnoncrysol.2022.121651
- [30] Işsever, U.G., Kilic, G., Peker, M., Ünaldi, T., & Aybek, A.Ş. (2019). Effect of low ratio V5+ doping on structural and optical properties of borotellurite semiconducting oxide glasses. Journal of Materials Science: Materials in Electronics, 30, 15156-15167. https://doi.org/10.1007/s10854-019-01889-7
- [31] Cruz, M.E., Fernández, J., Durán, A., Balda, R., & Castro, Y. (2023). Optically active nano-glass-ceramic coatings of Nd3+ doped-80SiO2-20LaF3 prepared by the pre-crystallized nanoparticles sol-gel route. Journal of Non-Crystalline Solids, 601, 122050. https://doi.org/10.1016/j.jnoncrysol.2022.122050
- [32] Chen, D., Zhou, Y., Wan, Z., Huang, P., Yu, H., Lu, H., & Ji, Z. (2015). Enhanced upconversion luminescence in phase-separation-controlled crystallization glass ceramics containing Yb/Er(Tm): NaLuF4 nanocrystals. Journal of the European Ceramic Society, 35, 2129-2137. https://doi.org/10.1016/j.jeurceramsoc.2015.01.021
- [33] Li, X., Qiu, L., Chen, Y., Zhu, Y., Yu, H., Zhong, J., Yang, T., & Mao, Q. (2021). LiYF4-nanocrystal-embedded glass ceramics for upconversion: glass crystallization, optical thermometry and spectral conversion. RSC Advances, 11, 2066-2073. https://doi.org/10.1039/d0ra08285f
- [34] Ryszczyńska, S., Trejgis, K., Marcinka, Ł., & Grzyb, T. (2021). Upconverting SrF2:Er3+ Nanoparticles for Optical Temperature Sensors. ACS Applied Nano Materials. 4(10), 10438-10448. https://doi.org/10.1021/acsanm.1c01964
- [35] Zi, Y., Yang, Z., Xu, Z., Bai, X., Ullah, A., Khan, I., Haider, A.A., Qiu, J., Song, Z., Wang, Y., & Cun, Y. (2021). A novel upconversion luminescence temperature sensing material: Negative thermal expansion Y2Mo3O12:Yb 3+, Er3+ and positive thermal expansion Y2Ti2O7:Yb 3+, Er3+ mixed phosphor. Journal of Alloys and Compounds, 880, 160156. https://doi.org/10.1016/j.jallcom.2021.160156
- [36] Chen, S.Y.Z., Song, W.H., Cao, J.K., Hu, F.F., & Guo, H. (2020). Highly sensitive optical thermometer based on FIR technique of transparent NaY2F7:Tm3+/Yb3+ glass ceramic. Journal of Alloys and Compounds, 825(5), 154011. https://doi.org/10.1016/j.jallcom.2020.154011
- [37] Wu, T., Tong, R., Liao, L., Huang, L., Zhao, S., & Xu, S. (2017). A Point Temperature Sensor Based on Upconversion Emission in Er3+/Yb3+ Codoped Tellurite-Zinc-Niobium Glass. Sensors, 17(6), 1253. https://doi.org/10.3390/s17061253
- [38] Manzani, D., Da Silveira Petruci, J. F., Nigoghossian, K., Cardoso, A. A., & Ribeiro, S. J. L. (2017). A portable luminescent thermometer based on green up-conversion emission of Er3+/Yb3+ co-doped tellurite glass. Scientific Reports, 7, 41596. https://doi.org/10.1038/srep41596
- [39] Tang, J., Sun, M., Huang, Y., Gou, J., Zhang, Y., Li, G., Li, Y., Man, Y., & Yang, Y. (2017). Study on optical properties and upconversion luminescence of Er3+/Yb3+ co-doped tellurite glass for highly sensitive temperature measuring. Optical Materials Express, 7(9), 3238-3250. https://doi.org/10.1364/OME.7.003238
- [40] Pisarski, W.A., Pisarska, J., Lisiecki, R., & Ryba-Romanowski, W. (2016). Er3+/Yb3+ co-doped lead germanate glasses for up-conversion luminescence temperature sensors. Sensors and Actuators A: Physical, 252, 54-58. https://doi.org/10.1016/j.sna.2016.11.010
- [41] Chengqi, E., Bu, Y., Meng, L., & Yan, X. (2017). Tm3+ Modified Optical Temperature Behavior of Transparent Er3+-Doped Hexagonal NaGdF4 Glass Ceramics. Nanoscale Research Letters, 12(1), 402. https://doi.org/10.1186/s11671-017-2167-9
- [42] Mao, Y., Xian, P., Jiang, L., Hu, S., Tang, J., & Yang, J. (2020). Temperature sensing performance based on up-conversion luminescence in hydrothermally synthesized Yb3+/Er3+ co-doped NaScF4 phosphors. Dalton Transactions, 49(23), 7862-7871. https://doi.org/10.1039/D0DT00809E
- [43] Liu, J., Huang, W., Xia, Z., & Xu, Y. (2020). Facile synthesis of accordion-like Y2O3:Er3+ nanothermometers for ratiometric temperature sensing applications. Journal of Luminescence, 223, 117207. https://doi.org/10.1016/j.jlumin.2020.117207
- [44] Du, P., Zhang, Q., Wang, X., Luo, L., & Li, W. (2019). Upconversion luminescence, temperature sensing and internal heating behaviors of Er3+/Yb3+/Fe3+-tridoped NaBiF4 nanoparticles. Journal of Alloys and Compounds, 805, 171-179. https://doi.org/10.1016/j.jallcom.2019.07.054
Uwagi
The research activity was granted by the National Science Centre, Poland No. 2020/39/D/ST5/ 02287, as well as in part by the “Excellence Initiative - Research University” for the AGH University of Science and Technology grant no. 501.696.7996 D2 L34 ID4844.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c76b9076-f5c2-433f-bf6a-5c134d368adf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.