PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

HVDC auxiliary emergency power control strategy for power disturbance in two different positions of AC/DC interconnection system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High voltage direct current (HVDC) emergency control can significantly improve the transient stability of an AC/DC interconnected power grid, and is an important measure to reduce the amount of generator and load shedding when the system fails. For the AC/DC interconnected power grid, according to the location of failure, disturbances can be classified into two categories: 1) interconnected system tie-line faults, which will cause the power unbalance at both ends of the AC system, as a result of the generator rotor acceleration at the sending-end grid and the generator rotor deceleration at the receiving-end grid; 2) AC system internal faults, due to the isolation effect of the DC system, only the rotor of the generator in the disturbed area changes, which has little impact on the other end of the grid. In view of the above two different locations of disturbance, auxiliary power and frequency combination control as well as a switch strategy, are proposed in this paper. A four-machine two-area transmission system and a multi-machine AC/DC parallel transmission system were built on the PSCAD platform. The simulation results verify the effectiveness of the proposed control strategy.
Rocznik
Strony
245--263
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wz.
Twórcy
autor
  • Zhengzhou University of Light Industry, China
autor
  • Zhengzhou University of Light Industry, China
autor
  • Nanyang Technological University, Singapore
autor
  • Zhengzhou University of Light Industry, China
  • Zhengzhou University of Light Industry, China
Bibliografia
  • [1] Harnefors L., Johansson N., Zhang L. et al., Interarea oscillation damping using active-power modulation of multiterminal HVDC transmissions, IEEE Transactions on Power Systems, vol. 29, no. 5, pp. 2529–2538 (2014).
  • [2] Rahman H.l., Khan B.H., Stability improvement of power system by simultaneous AC-DC power transmission, Electric Power System Research, vol. 78, iss. 4, pp. 756–764 (2008).
  • [3] Cai H., Qu Z., Gan D., A nonlinear robust HVDC control for a parallel AC/DC power system, Computers and Electrical Engineering, vol. 29, iss. 1, pp. 135–150 (2003).
  • [4] Jallad J., Mekhilef S., Mokhlis H., Frequency Regulation Strategies in Grid Integrated Offshore Wind Turbines via VSC-HVDC Technology: A Review, Energies, vol. 10, iss. 9, pp. 1244–1272 (2017).
  • [5] Shen Y., Yao W., Wen J. et al., Adaptive supplementary damping control of VSC-HVDC for interarea oscillation using GrHDP, IEEE Transactions on Power Systems, vol. 33, no. 2, pp. 1777–1789 (2018).
  • [6] Eriksson R., Söder L., Zhang L., Optimal coordinated control of multiple HVDC links for power oscillation damping based on model identification, European Transactions on Electrical Power, vol. 22, no. 2, pp. 188–205 (2012).
  • [7] Eriksson R., Coordinated control of multi terminal DC grid power injections for improved rotor angle stability based on Lyapunov theory, IEEE Transactions on Power Delivery, vol. 29, pp. 1789–1797 (2014).
  • [8] Weng H., Xu Z., WAMS based robust HVDC control considering model imprecision for AC/DC power systems using sliding mode control, Electric Power System Research, vol. 95, pp. 38–46 (2013).
  • [9] Azad S.P., Iravani R., Tate J.E., Damping Inter-Area Oscillations Based on a Model Predictive Control (MPC) HVDC Supplementary Controller, IEEE Transactions on Power Systems, vol. 28, iss. 3, pp. 3174–3183 (2013).
  • [10] Fuchs A., Imhof M., Demiray T., Morari M., Stabilization of Large Power Systems Using VSC–HVDC and Model Predictive Control, IEEE Transactions on Power Delivery, vol. 29, iss. 1, pp. 480–488 (2014).
  • [11] Ahmad S., Khan L., Performance Analysis of Conjugate Gradient Algorithms Applied to the Neuro-Fuzzy Feedback Linearization-Based Adaptive Control Paradigm for Multiple HVDC Links in AC/DC Power System, Energies, vol. 10, no. 6, pp. 819–841 (2017).
  • [12] Li C.S., Liu T.Q., Liu L.B., A auto disturbance rejection controller of multi-HVDC, Transactions of China Electrotechnical Society, vol. 30, no. 7, pp. 10–17 (2015).
  • [13] Preece R., Milanovic J.V., Almutairi A.M., Marjanovic O., Damping of inter-area oscillations in mixed AC/DC networks using WAMS based supplementary controller, IEEE Transactions on Power Systems, vol. 28, iss. 2, pp. 1160–1169 (2013).
  • [14] Du Z., Zhang Y., Chen Z., Integrated emergency frequency control method for interconnected AC/DC power systems using centre of inertia signals, IET Generation, Transmission & Distribution, vol. 6, iss. 6, pp. 584–592 (2012).
  • [15] Lyu J., Cai X., Amin M. et al., Subsynchronous Oscillation Mechanism and Its Suppression in MMC-Based HVDC Connected Wind Farms, IET Generation, Transmission & Distribution, vol. 12, vol. 4, pp. 1021–1029 (2018).
  • [16] Pipelzadeh Y., Chaudhuri N.R., Chaudhuri B. et al., Coordinated Control of Offshore Wind Farm and Onshore HVDC Converter for Effective Power Oscillation Damping, IEEE Trans. Power Syst., vol. 32, no. 3, pp. 1860–1872 (2017).
  • [17] Mc Namara P., Negenborn R.R., De Schutter B., Lightbody G., Optimal coordination of a multiple HVDC link system using centralized and distributed control, IEEE Tran. Control Syst. Technol., vol. 21, iss. 2, pp. 302–314 (2013).
  • [18] Shen L., Barnes M., Preece R. et al., The effect of VSC-HVDC control on AC system electromechanical oscillations and DC system dynamics, IEEE Transactions on Power Delivery, vol. 31, no. 3, pp. 1085–1095 (2016).
  • [19] Weng H., Xu Z., Xu F., Research on constraint factor of emergency power support of HVDC systems, Proceedings of the CSEE, vol. 34, vol. 10, pp. 1519–1527 (2014).
  • [20] Liu C.R.,Wei F.S., Chen Z.W. et al., Magnitude Adaptive Emergency Power Support Control Technology, Automation of Electric Power Systems, vol. 37, no. 21, pp. 123–128 (2013).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c76999b1-1f3c-4eaf-bcef-78955dd78a61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.