PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New designs of centrifugal magnetic fluid seals for rotating shafts in marine technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The centrifugal magnetic fluid seals have important advantage over the conventional centrifugal seals. They maintain very good sealing capacity at static, medium and high speeds of shaft rotation, with the increased seal lifetime, and minimum torque and static friction. These seals are particularly useful in cases when the angular shaft velocity varies and sometimes decreases to nearly or exactly zero, such as in flywheel applications, ship propeller main shafts, etc. Unique properties of the magnetic fluid give rare opportunities for application in marine design, where perfect sealing together with reliable lubrication are required. The paper presents a typical design and operation principle of a centrifugal magnetic fluid shaft seal, along with new design solutions. Not only in ocean technology and underwater robotics. Some cases of application of centrifugal magnetic fluid seals in modern sealing technology are included.
Rocznik
Tom
Strony
33--46
Opis fizyczny
Bibliogr. 59 poz., rys.
Twórcy
  • Gdansk University of Technology Narutowicza 11/12 80–233 Gdansk Poland
Bibliografia
  • 1. Y. Mitamura, S. Takahashi, S. Amari, E. Okamoto, S. Murabayashi, I. Nishimura, A magnetic fluid seal for rotary blood pumps: effects of seal structure on long-term performance in liquid, J Artif Organs 14 (2011) 23–30.
  • 2. J. Lee, C. Ahn, J. Choi, J. Park, S. Song, K. Sun, Development of magnetic bearing system for a new third-generation blood pump, Artif Organs 35 (11) (2011) 1082–1094.
  • 3. Huang W, Wang X. Ferrofluids lubrication: a status report. Lubric Sci 2016;28:3–26.
  • 4. Wang Z, Hu Z, Huang W, Wang X. Elastic support of magnetic fluids bearing. J Phys Appl Phys 2017;50:435004.
  • 5. Li D, Xu H, He X, Lan H. Study on the magnetic fluid sealing for dry Roots pump. J Magn Magn Mater 2005;289:419–22.
  • 6. Y. Mitamura et al., “A hydrodynamically suspended, magnetically sealed mechanically noncontact axial flow blood pump: Design of a hydrodynamic bearing,” Artif. Organs, 2007.
  • 7. L. Matuszewski and Z. Szydło, “The application of magnetic fluids in sealing nodes designed for operation in difficult conditions and in machines used in sea environment,” Polish Marit. Res., 2008.
  • 8. T. Kanno, Y. Kouda, Y. Takeishi, T. Minagawa, and Y. Yamamoto, “Preparation of magnetic fluid having activegas resistance and ultra-low vapor pressure for magnetic fluid vacuum seals,” Tribol. Int., 1997.
  • 9. T. Liu, Y. Cheng, and Z. Yang, “Design optimization of seal structure for sealing liquid by magnetic fluids,” in Journal of Magnetism and Magnetic Materials, 2005.
  • 10. Raj K., Stahl P., Bottenberg W.: Magnetic fluid seals for special applications, LE Transactions, vol.23, no 4, 1980.
  • 11. Mizumoto M.,Imai M., Inoue H.: Development of a centrifugal magnetic liquid seal for superconducting generators, Proc. of the 9th Int. Conference on Fluid Sealing, Noordwijkerhout, Netherlands, 1981.
  • 12. Wilcock D.F, Gay S.: The role of magnetic fluid seal in modern machinery, Lubrication Engineering, vol.40, no 6, 1984.
  • 13. Ochoński W.: Dynamic sealing with magnetic fluids, Wear, vol. 130, no 1, 1989
  • 14. Ochoński W.: High technology of sealing solved by ferrofluids, Industrial Lubrication and Tribology, vol. 45, no 4, 1993.
  • 15. Ochoński W.: New designs of magnetic fluid exclusion seals for rolling bearings, Industrial Lubrication and Tribology, vol. 57, no 3, 2005.
  • 16. Patent PL, Int.Cl. F16J15/43, no 202542, Centrifugal magnetic fluid shaft seal (in Polish).
  • 17. Patent application PL, no P-420053 Centrifugal seal with magnetic fluid for high-speed shaft (in Polish).
  • 18. Patent PL, Int.Cl. F16J15/453, no 174460, Ferromagnetic fluid centrifugal seal (in Polish).
  • 19. Patent PL, Int.Cl.F16J15/53, no 202306, Centrifugal magnetic fluid seal for high -speed shaft (in Polish).
  • 20. Patent USA, Int.Cl. F16J15/42, no 4455026, Vee-shaped magnetic/centrifugal seal and method of operation.
  • 21. Patent USA, Int.Cl. F16J15/42, no 4200296, Ferrofluid centrifugal seal.
  • 22. Patent PL, Int.Cl. F16J15/453, no 218345, Centrifugal seal with magnetic fluid (in Polish).
  • 23. Patent PL, Int.Cl.F16J15/42, no 220279, Centrifugal seal with magnetic fluid (in Polish).
  • 24. Patent application PL, no P-418800, Centrifugal seal with magnetic liquid for a high-speed shaft (in Polish).
  • 25. Patent application PL, no P-423513, Centrifugal seal with magnetic fluid for rotating shaft (in Polish).
  • 26. Patent PL, Int.Cl.F16J15-53, no 206282, Compact, centrifugal seal with magnetic fluid (in Polish).
  • 27. Patent application PL, no P-419854, Hybrid protective seal with magnetic fluid for rotating bearing (in Polish).
  • 28. Patent application PL, no P-418797, Feedthrough of highspeed shaft with centrifugal magnetic fluid seal (in Polish).
  • 29. Patent PL, Int.Cl.F16J15/40, no 1`163174, Multistage ferromagnetic fluid seal (in Polish).
  • 30. Patent application PL, no P-423713, Hybrid seal with magnetic fluid, especially for high-speed shaft (in Polish).
  • 31. Y. Mitamura and C. A. Durst, “Miniature magnetic fluid seal working in liquid environments,” J. Magn. Magn. Mater., 2017.
  • 32. M. Cong and H. Shi, “A study of magnetic fluid rotary seals for wafer handling robot,” in 15th International Conference on Mechatronics and Machine Vision in Practice, M2VIP’08, 2008.
  • 33. D. Li, H. Xu, X. He, and H. Lan, “Theoretical and experimental study on the magnetic fluid seal of reciprocating shaft,” in Journal of Magnetism and Magnetic Materials, 2005.
  • 34. M. Szczech and W. Horak, “Tightness testing of rotary ferromagnetic fluid seal working in water environment,” Ind. Lubr. Tribol., 2015.
  • 35. H. Urreta, G. Aguirre, P. Kuzhir, and L. N. Lopez de Lacalle, “Seals Based on Magnetic Fluids for High Precision Spindles of Machine Tools,” Int. J. Precis. Eng. Manuf., 2018.
  • 36. Y. Mitamura, S. Arioka, D. Sakota, K. Sekine, and M. Azegami, “Application of a magnetic fluid seal to rotary blood pumps,” J. Phys. Condens. Matter, 2008.
  • 37. Y. Mitamura, T. Yano, W. Nakamura, and E. Okamoto, “A magnetic fluid seal for rotary blood pumps: Behaviors of magnetic fluids in a magnetic fluid sealwith a shield,” Magnetohydrodynamics, 2013.
  • 38. T. Dimond, R. D. Rockwell, P. N. Sheth, and P. E. Allaire, “A New Fluid Film Bearing Test Rig for Oil and Water Bearings,” Proc. ASME Turbo Expo 2008 Power Land, Sea Air, 2008.
  • 39. K. Sekine, Y. Mitamura, S. Murabayashi, I. Nishimura, R. Yozu, and D. W. Kim, “Development of a Magnetic Fluid Shaft Seal for an Axial-Flow Blood Pump,” in Artificial Organs, 2003.
  • 40. M. S. Krakov and I. V. Nikiforov, “Effect of diffusion of magnetic particles on the parameters of the magnetic fluid seal: A numerical simulation,” Magnetohydrodynamics, 2014.
  • 41. Y. Mitamura et al., “Sealing Performance of a Magnetic Fluid Seal for Rotary Blood Pumps,” Artif. Organs, 2009.
  • 42. S. Chen and D. Li, “Influence of particle size distribution of magnetic fluid on the resistance torque of magnetic fluid seal,” J. Magn., 2017.
  • 43. A. Radionov, A. Podoltsev, and A. Zahorulko, “Finite-element analysis of magnetic field and the flow of magnetic fluid in the core of magnetic-fluid seal for rotational shaft,” in Procedia Engineering, 2012.
  • 44. Y. Mizutani, H. Sawano, H. Yoshioka, and H. Shinno, “Magnetic fluid seal for linear motion system with gravity compensator,” in Procedia CIRP, 2015.
  • 45. M. S. Krakov and I. V. Nikiforov, “Regarding the influence of heating and the Soret effect on a magnetic fluid seal,” J. Magn. Magn. Mater., 2017.
  • 46. Z. Meng, Z. Jibin, and H. Jianhui, “An analysis on the magnetic fluid seal capacity,” J. Magn. Magn. Mater., 2006.
  • 47. J. Salwiński and W. Horak, “Measurement of Normal Force in Magnetorheological and Ferrofluid Lubricated Bearings,” Key Eng. Mater., 2011.
  • 48. D. A. Bompos and P. G. Nikolakopoulos, “Experimental and Analytical Investigations of Dynamic Characteristics of Magnetorheological and Nanomagnetorheological Fluid Film Journal Bearing,” J. Vib. Acoust., 2016.
  • 49. I. F. Santos, “On the future of controllable fluid film bearings,” in 9th EDF/Pprime (LMS) Poitiers Workshop, 2010.
  • 50. S. E. Mushi, Z. Lin, and P. E. Allaire, “Design, construction, and modeling of a flexible rotor active magnetic bearing test rig,” IEEE/ASME Trans. Mechatronics, 2012.
  • 51. H. Montazeri, “Numerical analysis of hydrodynamic journal bearings lubricated with ferrofluid,” Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 2008.
  • 52. D. A. Bompos and P. G. Nikolakopoulos, “Journal Bearing Stiffness and Damping Coefficients Using Nanomagnetorheological Fluids and Stability Analysis,” J. Tribol., 2014.
  • 53. Z. Huang, J. Fang, X. Liu, and B. Han, “Loss Calculation and Thermal Analysis of Rotors Supported by Active Magnetic Bearings for High-Speed Permanent-Magnet Electrical Machines,” IEEE Trans. Ind. Electron., 2016.
  • 54. M. L. Chan et al., “Design and characterization of MEMS micromotor supported on low friction liquid bearing,” Sensors Actuators, A Phys., 2012.
  • 55. X. Song and H. G. Wood, “Application of CFX to Implantable Rotary Blood Pumps Suspended by Magnetic Bearings,” in International ANSYS Conference, 2004.
  • 56. D. A. Bompos and P. G. Nikolakopoulos, “CFD simulation of magnetorheological fluid journal bearings,” Simul. Model. Pract. Theory, 2011.
  • 57. S. Jahanmir et al., “Design of a small centrifugal blood pump with magnetic bearings,” Artif. Organs, 2009.
  • 58. W. Ochoński, “Sliding bearings lubricated with magnetic fluids,” Industrial Lubrication and Tribology. 2007.
  • 59. T. M. Lim, S. Cheng, and L. P. Chua, “Parameter estimation and actuator characteristics of hybrid magnetic bearings for axial flow blood pump applications,” Artificial Organs. 2009.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c7626596-55da-45e1-a90c-be2852da0143
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.