

PROBLEMY MECHATRONIKI

UZBROJENIE, LOTNICTWO, INŻYNIERIA BEZPIECZEŃSTWA

PROBLEMS OF MECHATRONICS

ARMAMENT, AVIATION, SAFETY ENGINEERING

ISSN 2081-5891; E-ISSN 2720-5266 https://promechjournal.pl/

Research paper

Evaluation of Robot Motion Trajectory Based on Selected

Mapping Algorithms

Wojciech KACZMAREK* (wojciech.kaczmarek@wat.edu.pl)

Natalia DANIEL (natalia.daniel@wat.edu.pl)

Szymon CHERUBIN (szymon.cherubin27@gmail.com)

*Corresponding author

ORCID: https://orcid.org/0000-0003-3805-9510

Military University of Technology,

2 Sylwestra Kaliskiego Str., 00-908 Warsaw, Poland

Received: August 3, 2022 / Revised: August 16, 2022 / Accepted: August 18, 2022 /

Published: March 31, 2024.

2024, 15 (1), 65-82; https://doi.org/10.5604/01.3001.0054.4489

Cite: Chicago Style

Kaczmarek, Wojciech, Natalia Daniel, and Szymon Cherubin. 2024. “Evaluation of Robot Motion Trajectory

Based on Selected Mapping Algorithms”. Problemy mechatroniki. Uzbrojenie, lotnictwo, inżynieria

bezpieczeństwa / Probl. Mechatronics. Armament Aviat. Saf. Eng. 15 (1) : 65-82.
https://doi.org/10.5604/01.3001.0054.4489

This article is an open access article distributed under terms and conditions of the

Creative Commons Attribution-NonCommercial-NoDerivatives International 4.0

(CC BY-NC-ND 4.0) license (https://creativecommons.org/licenses/by-nc-nd/4.0/)

mailto:wojciech.kaczmarek@wat.edu.pl
mailto:natalia
mailto:szymon.cherubin27@gmail.com
https://orcid.org/0000-0003-3805-9510
https://doi.org/10.3390/en16093863
http://creativecommons.org/licenses/by-nc-nd/3.0/

W. Kaczmarek, N. Daniel, S. Cherubin 66

Abstract. This paper presents the concept of a remotely controlled mobile robot that

generates a two-dimensional map of its surroundings. The hardware platform developed

relies on the LINUX operating system with the Robot Operating System (ROS) to

function properly. The authors focused on discussing the robot's hardware and presenting

the software used. In line with the assumptions made, the robot is capable of generating

a two-dimensional digital map of its surroundings, as well as of recording images of those

surroundings. The robot relies on lidar odometry for identifying its position, meaning that

the developed algorithm calculates the vehicle's location based on data from a laser

scanner. The main sources of environment-related information acquired by the robot

include the following: RPLidar A3M1 laser scanner by Slamtec (generating a digital map)

and a 5mpx HD OV5647 camera (capturing images of the surroundings). These devices

are coupled with the Raspberry Pi 3B on-board computer via a CSI interface.

Keywords: mobile robot, 2D map generation, ROS, Linux, Lidar

1. INTRODUCTION

Robotics is an interdisciplinary field that combines other fields of science.

Therefore, the process of designing, constructing and programming robots is

a difficult and demanding task. In addition to industrial robots which are usually

stationary or move along fixed paths (the so-called tracks), mobile robots exist as

well, with the latter being either autonomous devices or relying on operator’s

control inputs. Many solutions used in industrial applications (e.g.: vision

systems, recognition algorithms, or robot programming and control methods) are

used in mobile robotics, and vice versa [1, 2, 3].

The increasing robot adoption rate proves that robots are not only used in

the civilian sector (e.g. for performing inspections or working in warehouses),

but also in the military[4], where their main task is to perform reconnaissance and

combat missions. This ensures that the risk to human life and health is reduced.

In addition, sensors mounted on robots are less prone to make errors, as their

parameters surpass human perceptual capabilities. The ongoing conflict in

Ukraine demonstrates the important role of unmanned vehicles in collecting

information and securing an advantage over the enemy under combat conditions.

The UAVs used in Ukraine are a good example here, e.g. the Bayraktar TB2,

whose effectiveness was presented by N. Kumar [5]. Unmanned vehicles capable

of inspecting enclosed spaces and visualizing their surroundings with the help of

vision modules play a particularly important role when operating in urban

environments.

Technological advances allow members of the public to build and program

mobile robots themselves. This stems from the rapid development of software

solutions relied upon when programming mobile robots, including ROS (Robot

Operating System), increasing availability of a wide range of sensors needed to

acquire data concerning the robot’s surroundings, and the abundance of universal

communication protocols. Nevertheless, due to the complex nature of the matter

at hand, the process of building robots still remains an extremely challenging task.

Evaluation of Robot Motion Trajectory Based on Selected Mapping… 67

This stems, in particular, from the time-consuming nature of the process and

the need for extensive knowledge in such fields as electronics, mechanics and

computer science. When used in mobile robots, ROS offers a wide range of

opportunities - from controlling robot to designing applications that allow them

to collaborate in a group [6 - 9]. Hence, this software has become a standard used

in mobile robotics. This is very much justified, because the platform is available

free of charge and is widely accessible. Consequently, it is used by millions of

engineers around the world, which boosts its development even further.

In most cases, autonomous robots rely on on-board power sources, meaning

that their movement is not restricted by wires. One may also state that an

autonomous mobile robot is a device that does not require any external

infrastructure to navigate. It avoids collisions when moving along a preset route

without any direct operator intervention, based on the uploaded movement

trajectory. Thanks to their sensors, robots are able to move safely, avoiding

people and obstacles and adapting their path to on-site conditions. In order for

a robot to move autonomously, a map of its surroundings must be created first.

This task is usually accomplished by deploying a special mechanism to map the

space around the robot. As the robot is moving, its laser scanners detect walls and

pieces of machinery or equipment, allowing it to generate a map of its

surroundings.

2. MOBILE ROBOTS - CONCEPT AND CONSTRUCTION

A properly selected hardware and software structure of the robot guarantees

that it will function as intended and that it will perform the tasks for which it has

been designed. In the case described in this paper, it was assumed that the robot

would be capable of performing the following tasks:

• generating a digital, two-dimensional map of its surroundings;

• capturing images of the surroundings;

• locating itself in space using lidar odometry;

• operating in the remote control mode.

2.1. Hardware platform

In order to operate properly, the robot requires the right configuration of its

electrical, electronic and mechanical components which must work closely

together. Figure 2.1 shows a simplified block diagram of the hardware of the

mobile robot designed.

W. Kaczmarek, N. Daniel, S. Cherubin 68

Fig. 2.1. Block diagram of the robot's hardware structure

The on-board computer responsible for all computations is the element that

determines the robot's capabilities. It is tasked with processing data from

individual sensors and generating relevant control commands in the form of

electrical signals via its GPIO output. Additionally, the module must support

a wireless transmission protocol to communicate with the user's computer. In the

case at hand, the robot’s on-board computer is of the Raspberry Pi 3B single board

variety [10]. It is equipped with a quad-core, 64-bit Broadcom BCM2837

processor relying on the ARMv8-A architecture and is clocked at 1.2 GHz. The

computer offers numerous outputs, including: 4x USB, GPIO and CSI, allowing

it to communicate with the robot's sensors.

The RPLidar A3M1 laser scanner by Slamtec is the main source of

information about the surroundings [11]. This sensor is responsible for generating

the data used to create a digital map of the surroundings and the establish robot's

position in space. It is an allothetic source of information which is characterized

by a high degree of accuracy and good operating speed, as it uses an infrared laser

beam as a data medium.

A 5-megapixel HD OV5647 camera was used as the robot’s vision module

for capturing images of the surroundings. The camera is connected to the on-

board computer via the CSI interface. The connector uses the MIPI CSI-2

protocol, being the latest communication interface standard used in cameras. The

protocol’s features include improved radio interference mitigation, higher

compression rates and reduced latency (when compared with its predecessors).

Before fabricating the actual platform, a CAD model was developed in the Solid

Edge environment (Fig. 2.2).

Evaluation of Robot Motion Trajectory Based on Selected Mapping… 69

Fig. 2.2. General views of the robot platform: a) CAD model of the robot, b) actual

robot

The robot’s chassis is the ROVER 5-2 platform. It is a tracked drive system

relying on nonholonomic motion. The platform is equipped with two DC motors

with a gear ratio of 87:1. The motors generate 1 Nm of torque and achieve 8,804

rpm. A two-channel TB6612FNG controller [12]was used to control the

platform’s motors. Mentioned controller is based on an H-bridge relying on

a MOSFET transistor. Such an approach allows to reduce voltage drops at the

output, thus resulting in more efficient operation of the robot's motors.

2.2. Robot software

As the RPi 3B single-board computer was used, the decision was made to

equip the robot with an operating system based on the Linux Ubuntu MATE

kernel. It is compatible with ROS software - the system chosen as the robot's

programming environment.

The Ubuntu MATE system used in the robot is a complete distribution of

the GNU/Linux operating system. The system efficiently supports the ROS

software and is the version deployed significantly reduces the use of CPU

computing resources compared to the classic version of Ubuntu. Xenial Xerus

version 16.04 was installed on the robot’s platform. The decision to choose and

install the version published in 2016 was dictated by the fact that it allows the

ROS environment to work with the Kinetic version of ROS, with the latter being

one of the most effective releases of software for controlling mobile robots.

Communication of the robot's CPU with the user's personal computer relies on

the TCP/IP protocol [13]. An SSH connection was used for this purpose, allowing

operating systems running on the same wireless network to interact.

The ROS (Robot Operating System) environment was software relied upon

to implement the control algorithms, as well as acquire and process data from the

individual sensor systems. It is a robust, open-source software platform.

W. Kaczmarek, N. Daniel, S. Cherubin 70

It is applied in robotics primarily as a system responsible for controlling

humanoid robots, industrial robots, as well as mobile robots - operating not only

on the ground, but also on water and in the air. The platform was created in 2007

in California as a result of a collaboration between Stanford University and

Willow Garage. Since its creation, the platform has been continuously developed

by an international group of robotics developers [8, 14, 15]. The ROS platform

relies on the communication between individual processes (Fig. 2.3) which

simultaneously play the role of operational nodes responsible for the selected

functions of the robot. The manner in which this software operates is described

in detail by M. Quigley [15]. The nodes create a network interconnecting the

individual processes. This ensures that each node has access to the entire network,

that they cooperate with each other, and that the type of data sent to the network

can be monitored. ROS allows to exchange messages in the form of: topics,

services, parameters and actions.

Fig. 2.3. Diagram showing the cooperation of nodes in a ROS environment

The ROS environment supports software developed with the use of high-

level languages: Python and C++. The task of building structures, in turn, is the

responsibility of catkin. It is an official compiler consisting of CMake macros and

custom scripts developed in Python. Catkin is the successor of rosbuild - a basic

compiler used in the ROS environment. Compared to its predecessor, it offers

much improved functionalities. Similarly to CMake, catkin automatically

manages the compilation processes, meaning that the program is not compiled on

its own, but compilation rule files are generated for a specific environment. In the

case of GNU/Linux, Makefile files are generated. By using Python-derived

scripts, a user using the catkin compiler has the ability to automatically search for

packages and develop multiple large-format projects simultaneously [16]. The

Robot Operating System also has a number of graphical tools to control the

operation of individual vehicle components and software packages.

Evaluation of Robot Motion Trajectory Based on Selected Mapping… 71

In addition, ROS is equipped with tools to visualize vehicle operation based

on data from sensory systems, as well as to simulate vehicle operation. The most

commonly used tools include the following:

• RQT package – a platform included in the ROS software that allows to

implement various GUI-type tools in the form of plug-ins [17]. In addition,

the platform allows to visualize the structure of the nodes and the

connections between them, which greatly facilitates understanding of the

manner in which the ROS system operates. Furthermore, the rqt package

allows to analyze nodes by mirroring the transformation tree, a process

launched by the basic node of the rqt_tf_tree system, and calling the node

connections network – rqt_graph.

• Rviz – a package used for 3-dimensional visualization of messages in ROS,

developed at a Korean university [18]. It allows to visualize sensor data and

depicts the robot's environment. In addition, it allows to visualize data from

the perspective of the selected coordinate system, based on data from the tf

library. It also enables graphical representation of the robot's URDF model

and kinematic analysis of its movement. In addition, the graphical tool

interface provides a digital map of the robot’s surrounding, based on sensor

data.

• URDF (Unified Robot Description Format) – a format used to determine

the robot's kinematics and dynamics. It is also relied upon to represent the

robot [19]. The format is used in the rviz visualizer and the Gazebo

simulator. URDF files are created using HTML. Based on data contained in

the unified format, it is possible to calculate the robot's spatial position and

detect potential programming errors.

• Gazebo – a free ROS program used to perform 3D simulations of the robot’s

functioning. It is one of the most popular simulators used in the field of

robotics and relies on the OGRE (Object-Oriented Graphics Rendering

Engine) graphics engine. Such an approach stems from its good

performance, very accurate representation of reality and the laws of physics

for which the ODE (Open Dynamics Engine) engine is responsible [20].

3. ROBOT’S OPERATING ALGORITHMS

3.1. Robot's control algorithm

The robot’s control algorithm shown in Figure 3.1 is implemented using

the procedures responsible for remote control of the vehicle [21]. As stated

earlier, this feature is realized in the presented solution by using a wireless

network based on the ssh protocol.

W. Kaczmarek, N. Daniel, S. Cherubin 72

Fig. 3.1. Robot's control algorithm

The node network responsible for controlling effectors is shown in Figure

3.2. The keyboard_driver node is responsible for handling the keys on the user's

personal computer and sending the relevant message to the keys_to_twist node. It

converts the key strikes to corresponding command streams in the form of

cmd_vel messages. Such messages have the form of a PWM signal with its length

adapted to the vehicle’s speed received by the motors node. This node represents

those pins of the GPIO connector to which inputs of the DC motor controller are

connected.

Evaluation of Robot Motion Trajectory Based on Selected Mapping… 73

Fig. 3.2. Diagram of nodes responsible controlling the robot remotely

3.2. Map generating algorithm

One of the vehicle's most important algorithms is the advanced SLAM

algorithm, as it is responsible for the simultaneous generation of a two-

dimensional map of the surroundings and for locating the robot within those

surroundings. The hector_slam algorithm is used in the project [22]. It is

responsible for solving SLAM problems based solely on laser scanner data.

In order to generate a digital map, the ROS software requires an appropriate

transformation of the coordinate systems representing each of the robot's

components. This is done with the use of the tf library which is responsible for

the scene graph concept, reflected in the form of a hierarchy tree. The root of the

tree represents the map of the surroundings, while each of its tops is a geometric

transformation, a translation, or a rotation between the arrangements of each

component. Figure 3.3 shows a transformation tree of the robot’s coordinate

system, generated using the rqt_tf_tree package.

Fig. 3.3. Transformation tree of the robot's coordinate systems

The laser subtree reflects the coordinate system in a polar form represented

by the laser scanner, while base_link is a representation of the coordinate system

of the robot’s platform.

W. Kaczmarek, N. Daniel, S. Cherubin 74

Scanmatcher_frame, on the other hand, is the frame responsible for locating

the robot on the root of the tree (being the map frame), based solely on data from

the laser scanner[23]. The structure of the node network is responsible for solving

the SLAM problem in the ROS environment and was generated using the

rqt_graph package (Fig. 3.4).

Fig. 3.4. Node network responsible for resolving SLAM problems

The hector_slam package is based on the representation of a presence mesh

which consists in representing a map of the robot's surroundings as fields of

binary random variables, with each of them representing the presence of an

obstacle. Occupancy grid maps are algorithms used in probabilistics to generate

a map, assuming that the position of the robot is known. They visualize the map

as a fine-grained grid of cells in a continuous space of locations. They are

responsible for estimating the probability of future occupancy of each of those

cells, using a Bayes filter in the form of [24]:

𝑝(𝑚|𝑧1:𝑡, 𝑥1:𝑡) = ∑ 𝑝(𝑚1|𝑧1:𝑡, 𝑥1:𝑡)
𝑖

 (3.1)

where: 𝑥1:𝑡 – map location,

 𝑧1:𝑡 – observer’s position,

 𝑚𝑖 – map slice.

Fig. 3.5. General view of a two-dimensional map of a room

Evaluation of Robot Motion Trajectory Based on Selected Mapping… 75

Figure 3.5 shows a digital, two-dimensional map of the vehicle's

surroundings generated by the robot (using the hector_slam package).

4. TESTING THE ROBOT

The test aimed to compare the digital maps of the same environment created

by different algorithms. The trajectories followed by the robot while generating

the maps were compared as well. The following mapping algorithms were used

in the study:

• Hector_slam – an algorithm using lidar odometry.

• Gmapping – an algorithm using proprioceptive odometry [24].

• RTAB-map – an algorithm using lidar odometry and the ICP algorithm

[25].

Figures 4.1 – 4.3 present the maps generated with the use of the mapping

algorithms tested. The drawings prove that all algorithms generated correct maps

of the premises investigated. The map generated by the RTAB-map algorithm has

rough surfaces, which is inconsistent with reality. However, this algorithm is

responsible for generating a three-dimensional map of the surroundings and uses

the two-dimensional form of the map solely for the purposes of guiding the

autonomous robot. Other algorithms generate smooth obstacle surfaces.

Fig. 4.1. Map generated using the

gmapping algorithm

Fig. 4.2. Map generated using the

RTAB-map algorithm

W. Kaczmarek, N. Daniel, S. Cherubin 76

Fig. 4.3. Map generated using the hector_slam algorithm

The maps generated by RTAB-map and hector_slam algorithms are

characterized by certain obstacle surfaces being marked in bold lines. This is the

result of the algorithms' failure to detect the closure loop. The above means that

the vehicle is treating the surface of an already known location as unknown,

which results in a given obstacle being generated anew, instead of being updated.

Upon encountering mirrors in the room, all algorithms represented them as free

spaces. This error cannot be eliminated, as it stems from the physical properties

of mirrors which reflect the scanner’s laser beam straight onto obstacles present

opposite the mirror. Algorithms using lidar odometry, i.e. hector_slam and

RTAB-map were used to evaluate the robot's motion trajectory. Figure 4.4 shows

the trajectories of the robot's passages in a two-dimensional Cartesian system.

Figure 4.5 shows changes in the robot's position relative to x and y axes.

When analyzing the diagrams of the robot's trajectory using mapping

algorithms that rely on different localization methods, one may clearly see

a deviation of the trajectory recorded by the RTAB-map algorithm compared to

that recorded by hector_slam. Furthermore, one may clearly see, in the diagram

showing changes in the robot's position relative to both axes, that the RTAB-map

algorithm is less accurate than its counterpart and needs to rely on interpolation

in determining the robot's location. There is also a noticeable difference in the

number of position measurements taken by the two algorithms. RTAB-map took

approximately 5,200 measurements, with hector_slam taking roughly 8,800.

Evaluation of Robot Motion Trajectory Based on Selected Mapping… 77

Fig. 4.4. Diagram of the robot’s trajectory in a two-dimensional Cartesian system

Fig. 4.5. Diagram of changes in the robot's position relative to x and y axes

In addition, the interpolation of successive points of the robot's location is

clearly visible on the graph of changes in the robot's position relative to the x axis.

This is due to the fact that the RTAB-map algorithm is used for simultaneous

generation of a two-dimensional map and a three-dimensional map, meaning that

the computational resources need to be divided and that more of them need to be

allocated to the generation of the three-dimensional map. The problem of the

presence of reflective surfaces in the room (i.e. mirrors) has been noted as well,

as they may result in errors in the generated maps.

W. Kaczmarek, N. Daniel, S. Cherubin 78

5. CONCLUSIONS

The robot developed and described in this paper proves that customized

robot structures, relying on technological advances in the robotics industry, may

be built almost by anyone. An unmanned inspection vehicle, such as the robot

developed in the course of this project, offers a great development potential and

may be used in many various applications. It may be relied upon, for instance, as

a vehicle inspecting premises located in urban areas, to gain an information

advantage and protect human life and health by accessing hard-to-reach or

dangerous areas. The development potential consists, in particular, in the ability

to increase the number of sensors mounted on the robot in order to enable it to

acquire more information from the environment, as well as in developing

autonomous navigation algorithms. Currently, work is underway to implement

algorithms that allow to generate 3D maps of the surroundings, and to develop

advanced autonomous navigation algorithms. The former of those modifications

involves the use of an RGB-D vision module and requires that the sensor

information be combined to develop a 3D map of the surroundings. The latter

development consists in using a proprioceptive odometry sensor in the form of

encoders that allow to obtain more accurate data on the robot's location in space.

By transmitting such information to advanced autonomous navigation

algorithms, the robot will be able to move autonomously to the designated

location.

The selected tests presented in the paper have shown that the map generation

algorithms used correctly generated a map of the premises in which the developed

robot was moving. With that said, the map generated by the RTAB-map

algorithm failed to accurately reflect smooth surfaces (the surfaces were

generated as rough). Evaluation of the robot's trajectory generated by lidar

odometry algorithms (hector_slam and RTAB-map) shows that the RTAB-map

algorithm exhibits lower accuracy levels and requires to apply interpolation in

determining the robot's location.

FUNDING

The work was supported by the Military University of Technology (Warsaw,

Poland) under research project No. UGB 893/2021.

Evaluation of Robot Motion Trajectory Based on Selected Mapping… 79

REFERENCES

[1] Kaczmarek, Wojciech, Bartłomiej Lotys, Szymon Borys, Dariusz

Laskowski, and Piotr Lubkowski. 2021. “Controlling an industrial robot

using a graphic tablet in offline and online mode”. Sensors 21 (7) :2439-

1-20.

[2] Kaczmarek, Wojciech, Jarosław Panasiuk, Szymon Borys, and Patryk

Banach. 2020. “Industrial robot control by means of gestures and voice

commands in off-line and on-line mode”. Sensors 20 (21) : 6358-1-15.

[3] Szymon Borys, Wojciech Kaczmarek, and Dariusz Laskowski. 2020.

“Selection and optimization of the parameters of the robotized packaging

process of one type of product”. Sensors 20 (18) : 5378-1–21.

[4] Trojnacki, Maciej, Piotr Szynkarczyk, Adam Andrzejuk. 2008.

“Tendencje rozwoju mobilnych robotów lądowych (1) Przegląd robotów

mobilnych do zastosowań specjalnych”. Pomiary Autom. Robot.12 (6) :

11–14.

[5] Kumar, Brig Narender. 2022. Russia Ukraine War Lessons for India in

Conventional and Hybrid Warfare Domain.

https://www.researchgate.net/publication/361039389_Russia_Ukraine_

War_Lessons_for_India_in_Conventional_and_Hybrid_Warfare_Domai

n

[6] Besseghieur, Lakhdar Khadir, Radosław Trȩbiński, Wojciech Kaczmarek,

and Jarosław Panasiuk. 2018. “Trajectory tracking control for a

nonholonomic mobile robot under ROS”. J. Phys. Conf. Ser. 1016 :

012028-1-5.

[7] Besseghieur, Lakhdar Khadir, Wojciech Kaczmarek, and Jarosław

Panasiuk. 2017. “Multi-robot Control via Smart Phone and Navigation in

Robot Operating System”. Problemy mechatroniki. Uzbrojenie, lotnictwo,

inżynieria bezpieczeństwa / Probl. Mechatronics Armament Aviat. Saf.

Eng. 8 (4) : 37-46.

[8] Besseghieur, Lakhdar Khadir, Radosław Trębiński, Wojciech Kaczmarek,

and Jarosław Panasiuk. 2020. “From Trajectory Tracking Control to

Leader–Follower Formation Control”. Cybern. Syst. 51 (4) : 339–356.

[9] Siwek, Michał, Leszek Baranowski, Jarosław Panasiuk, and Wojciech

Kaczmarek. 2019. “Modeling and simulation of movement of dispersed

group of mobile robots using Simscape multibody software”. AIP Conf.

Proc. 2078 (1) : 020045-1-5.

[10] Maksimović, Mirjana, Vladimir Vujović, Nikola Davidović, Vladimir

Milošević, and Branko Perišić. 2014. “Raspberry Pi as Internet of Things

hardware : Performances and Constraints,” Des. Issues, 3 : 8.

W. Kaczmarek, N. Daniel, S. Cherubin 80

[11] RPLIDAR Interface Protocol and Application Notes. 2018. SLAMTEC.

 [12] Qureshi, M.F. 2020. “Double Self-Balancing Robot”. Affil. with NED

Univ. Eng. Technol., Karachi Dep. Electr. Eng.,

DOI: 10.13140/RG.2.2.14414.48965.

[13] Docter, Quentin, and Jon Buhagiar. 2019. Introduction to TCP/IP. DOI:

10.1002/9781119553588.ch7.

[14] Dudek, Wojciech. 2013. Wykorzystanie czujnika Kinect i systemu ROS do

sterowania ruchem robota mobilnego. Praca dyplomowa. Warszawa:

Wydawnictwo Politechniki Warszawskiej.

[15] Yoshida, Hideki, Hiroshi Fujimoto, Daisuke Kawano, Yuichi Goto,

Misaki Tsuchimoto, and Koji Sato.2015. Range extension autonomous

driving for electric vehicles based on optimal velocity trajectory and

driving braking force distribution considering road gradient information.

In Proceedings of the IECON 2015 - 41st Annu. Conf. IEEE Ind. Electron.

Soc., pp. 4754–4759, DOI: 10.1109/IECON.2015.7392843.

[16] Quigley, Morgan, Brian Gerkey, and William D. Smart. 2015.

Programming Robots with ROS. USA: O’Reilly Media, Inc., 1005

Gravenstein Highway North, Sebastopol, CA 95472.

[17] Borkowski, Mateusz, Krystian. Łygas. 2017. “Model robota szeregowego

typu Scara w środowisku ROS". Autobusy Tech. Eksploat. Syst. Transp.

18 (6) : 551–554.

[18] Kam, Hyeong Ryeol, Song-Ho Lee, Taejung Park, and Chang-Hun Kim.

2015. “RViz: a toolkit for real domain data visualization”. Telecommun.

Syst. 60 (2) : 337–345.

[19] Kang, Y., D. Kim, and K. Kim. 2019. URDF Generator for Manipulator

Robot. In Proceedings of the 2019 Third IEEE Int. Conf. Robot. Comput.,

pp. 483–487.

[20] Peake, Ian, Jozeph La Delfa, Ronal Bejarano, and Jan Olaf Blech. 2021.

Simulation Components in Gazebo. In Proceedings of the 22nd IEEE

International Conference on Industrial Technology (ICIT) 1 : 1169–1175.

[21] Cheng, Yao-Yao, and Dian-Xi Shi. 2017. Ros Based Remote Robot Task

Monitoring and Control System. In Proceedings of the ITM Web Conf. 12

(5) : 01023.

[22] Kohlbrecher, Stefan, Johannes Meyer, Thorsten Graber, Karen Petersen,

Uwe Klingauf, and Oskar von Stryk. 2014. Hector open source modules

for autonomous mapping and navigation with rescue robots. In: Behnke,

S., Veloso, M., Visser, A., Xiong, R. (eds) RoboCup 2013: Robot World

Cup XVII. RoboCup 2013. Lecture Notes in Computer Science(), vol

8371. Springer: Berlin, Heidelberg.

[23] Kohlbrecher, Stefan, Oskar von Stryk, Johannes Meyer, and Uwe

Klingauf. 2011. A flexible and scalable SLAM system with full 3D

motion estimation. In Proceedings of the 2011 IEEE International

Symposium on Safety, Security, and Rescue Robotics pp. 155–160.

https://ieeexplore.ieee.org/author/37289580800
https://ieeexplore.ieee.org/author/37085699956
https://ieeexplore.ieee.org/author/37085715147
https://ieeexplore.ieee.org/author/37085706625
https://ieeexplore.ieee.org/author/37085717264

Evaluation of Robot Motion Trajectory Based on Selected Mapping… 81

[24] da Silva M.F. Bruno, Rodrigo S. Xavier, and Luiz M.G. Gonçalves. 2019.

“Mapping and Navigation for Indoor Robots under ROS : An

Experimental Mapping and Navigation for Indoor Robots under ROS : An

Experimental Analysis. Preprints 2019, 2019070035.

https://doi.org/10.20944/preprints201907.0035.v1

[25] Labbé, M.and F. Michaud. 2019. “RTAB-Map as an open-source lidar and

visual simultaneous localization and mapping library for large-scale and

long-term online operation. J. F. Robot. 36 (2) : 416–446.

[26] Grupp, Michael. 2022.“Python package for the evaluation of odometry

and slam". A library for handling, evaluating and comparing trajectory

results of odometry and SLAM algorithms,

https://github.com/MichaelGrupp/evo (access: January, 10.2022).

W. Kaczmarek, N. Daniel, S. Cherubin 82

Ocena trajektorii ruchu robota na podstawie wybranych

algorytmów mapujących

Wojciech KACZMAREK, Natalia DANIEL, Szymon CHERUBIN

Wojskowa Akademia Techniczna

ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa

Streszczenie. W artykule przedstawiono koncepcję zdalnie sterowanego robota

mobilnego, generującego dwuwymiarową mapę otoczenia. Opracowana platforma

sprzętowa do poprawnego funkcjonowania wykorzystuje system operacyjny LINUX

z systemem Robot Operating System (ROS). Autorzy skupili się na omówieniu struktury

sprzętowej robota oraz przedstawieniu zaimplementowanego oprogramowania. Zgodnie

z przyjętymi założeniami wykonany robot umożliwia generowanie dwuwymiarowej

cyfrowej mapy otoczenia i rejestrację obrazu otoczenia. Do lokalizacji w przestrzeni,

robot wykorzystuje odometrię lidarową, co oznacza że opracowany algorytm wylicza

położenie pojazdu na podstawie danych pochodzących ze skanera laserowego. Głównymi

źródłami informacji pozyskiwanych przez robota z otoczenia są: skaner laserowy

RPLidar A3M1 firmy Slamtec (generowanie mapy cyfrowej) oraz kamera HD OV5647

o rozdzielczości 5mpx (rejestracja obrazu otoczenia). Urządzenia te współpracują

z komputerem pokładowym Raspberry Pi 3B za pomocą złącza CSI.

Słowa kluczowe: robot mobilny, generacja mapy 2D, ROS, Linux, Lidar.

