PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Photocatalytic properties of Ti–V oxides thin films

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the photocatalytic properties of Ti–V oxides thin films with 19 and 23 at.% of vanadium addition have been outlined. The films were deposited by the high energy reactive magnetron sputtering method. X-ray photoelectron spectroscopy measurements were done in order to determine the chemical composition and binding energy of the elements on the samples surface. Additionally, based on wettability measurements, the water contact angles were evaluated and were equal to ca. 94° and 55° for thin films with 19 and 23 at.% of V, respectively. This testifies about hydrophilic and hydrophobic properties, respectively. Photoactivity of thin films was determined by percent decomposition of phenol for 5 hours during UV–vis radiation exposure. The highest photocatalytic activity of 6.2%/cm2 was obtained for thin films with 19 at.% of V. It has been found that an increase in V amount in Ti–V oxides thin films to 23 at.% results in lowered to 3%/cm2 photocatalytic activity.
Czasopismo
Rocznik
Strony
153--162
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, Janiszewskiego 11/17, 50-372 Wrocław, Poland
autor
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, Janiszewskiego 11/17, 50-372 Wrocław, Poland
autor
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, Janiszewskiego 11/17, 50-372 Wrocław, Poland
autor
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, Janiszewskiego 11/17, 50-372 Wrocław, Poland
autor
  • BOHAMET, Ciele, Toruńska 2, 86-005 Białe Błota, Poland
Bibliografia
  • [1] CARP O., HUISMAN C.L., RELLER A., Photoinduced reactivity of titanium dioxide, Progress in Solid State Chemistry 32(1–2), 2004, pp. 33–177.
  • [2] XIAOBO CHEN, MAO S.S., Titanium dioxide nanomaterials: synthesis, properties, modifications and applications, Chemical Review 107(7), 2007, pp. 2891–2959.
  • [3] XUXU WANG, WENHAO LIAN, XIANZHI FU, BASSET J.-M., LEFEBVRE F., Structure, preparation and photocatalytic activity of titanium oxides on MCM-41 surface, Journal of Catalysis 238(1), 2006, pp. 13–20.
  • [4] JIAGUO YU, GUOHONG WANG, BEI CHENG, MINGHUA ZHOU, Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders, Applied Catalysis B: Environmental 69(3–4), 2007, pp. 171–180.
  • [5] WANG W., HAO H., Design of broadband and wide-angle antireflection for solar cells, Chinese Optics Letters 8, 2010, pp. 35–37.
  • [6] LINSEBIGLER A.L., GUANGQUAN LU, YATES J.T., Photocatalysis on TiO2 surfaces: principles, mechanisms and selected results, Chemical Review 95(3), 1995, pp. 735–758.
  • [7] CHOI W., TERMIN A., HOFFMANN M.R., The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics, Journal of Physical Chemistry B 98, 1994, pp. 13669–13679.
  • [8] YAMASHITA H., HARADA M., MISAKA J., TAKEUCHI M., IKEUE K., ANPO M., Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts, Journal of Photochemistry and Photobiology A: Chemistry 148(1–3), 2002, pp. 257–261.
  • [9] JINKAI ZHOU, TAKEUCHI M., ZHAO X.S., RAY A.K., ANPO M., Photocatalytic decomposition of formic acid under visible light irradiation over V-ion implanted TiO2 thin film photocatalysts prepared on quartz substrate by ionized cluster beam (ICB) deposition method, Catalysis Letters 106(1–2), 2006, pp. 67–70.
  • [10] IKETANI K., REN-DE SUN, TOKI M., HIROTA K., YAMAGUCHI O., Sol–gel-derived Vχ Ti1–χO2 films and their photocatalytic activities under visible light irradiation, Materials Science and Engineering B 108(3), 2004, pp. 187–193.
  • [11] KLOSEK S., RAFTERY D., Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol, Journal of Physical Chemistry B 105(14), 2001, pp. 2815–2819.
  • [12] SERPONE N., LAWLESS D., DISDIER J., HERRMANN J.-M., Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids: naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations, Langmuir 10(3), 1994, pp. 643–652.
  • [13] FUERTE A., HERNÁNDEZ-ALONSO M.D., MAIRA A.J., MARTÍNEZ-ARIAS A., FERNÁNDEZ-GARCÍA M., CONESA J.C., SORIA J., Visible light-activated nanosized doped-TiO2 photocatalysts, Chemical Communications, No. 24, 2001, pp. 2718-2719.
  • [14] SUE-MIN CHANG, WEI-SZU LIU, Surface doping is more beneficial than bulk doping to the photocatalytic activity of vanadium-doped TiO2, Applied Catalysis B: Environmental 101(3–4), 2011, pp. 333–342.
  • [15] HONG LI, GAOLING ZHAO, GAORONG HAN, BIN SONG, Hydrophilicity and photocatalysis of Ti1–xVxO2 films prepared by sol–gel method, Surface and Coatings Technology 201(18), 2007, pp. 7615–7618.
  • [16] WANG Y., DOREN D.J., Electronic structures of V-doped anatase TiO2, Solid State Communications 136(3), 2005, pp. 142–146.
  • [17] PROCIOW E.L., DOMARADZKI J., SIERADZKA K., KACZMAREK D., MAZUR M., Structural, electrical and surface static charge investigation of TiO2 thin films doped with different amount of vanadium, Proceedings of 32th International Spring Seminar on Electronics Technology, 2009, Brno, Czech Republic, pp. 1–5.
  • [18] SIERADZKA K., PROCIOW E.L., DOMARADZKI J., MAZUR M., KACZMAREK D., Electrical investigation of transparent thin films based on TiO2 doped with palladium and vanadium, 2009 International Students and Young Scientists Workshop “Photonics and Microsystems”, Wernigerode, Germany (IEEE, Piscataway, 2009), pp. 72–76.
  • [19] PROCIOW E.L., DOMARADZKI J., KACZMAREK D., BERLICKI T., Polish patent No. P382163, 2007
  • [20] DOMARADZKI J., PROCIOW E.L., KACZMAREK D., BERLICKI T., PODHORODECKI A., KUDRAWIEC R., MISIEWICZ J., X-ray, optical and electrical characterization of doped nanocrystalline titanium oxide thin films, Materials Science and Engineering B 109(1–3), 2004, pp. 249–251.
  • [21] ASTM Powder Diffraction Data Cards, International Centre for Diffraction Data, New York, 1983, Card 9-387.
  • [22] BABELON P., DEQUIEDT A.S., MOSTÉFA-SBA H., BOURGEOIS S., SIBILLOT P., SACILOTTI M., SEM and XPS studies of titanium dioxide thin films grown by MOCVD, Thin Solid Films 322(1–2), 1998, pp. 63–67.
  • [23] CARRAWAY E.R., HOFFMAN A.J., HOFFMANN M.R., Photocatalytic oxidation of organic acids on quantum-sized semiconductor colloids, Environmental Science and Technology 28(5), 1994, pp. 786–793.
  • [24] SEONG-IL YOON, IN-GYUNG JUNG, MISOOK KANG, Characterization of metal (Ba, Al, Si, V and W)--incorporated TiO2 and toluene photodecomposition in the presence of H2O, Korean Journal of Chemical Engineering 24(6), 2007, pp. 965–974.
  • [25] SIERADZKA K., KACZMAREK D., DOMARADZKI J., PROCIOW E., MAZUR M., GÓRNICKA B., Optical and electric al properties of nanocrystalline TiO2:Pd semiconducting oxides, Central European Journal of Physics 9(2), 2011, pp. 313–318.
  • [26] EUFINGER K., POELMAN D., POELMAN H., DE GRYSE R., MARIN G.B., Photocatalytic activity of dc magnetron sputter deposited amorphous TiO2 thin films, Applied Surface Science 254(1), 2007, pp. 148–152.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c74ea84b-666a-4a21-8e63-eda0a0c89fe5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.