Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Metody zwiększenia skuteczności ochronnej dodatkowego pancerza z perforowanych blach z ultra-wytrzymałej stali nanobainitycznej
Języki publikacji
Abstrakty
The mechanical properties of industrially produced perforated steel plates are obtained by hardening and low-temperature tempering to produce a martensitic microstructure. Another morphological type of steel microstructure that allows for ultra-high strength and, at the same time, a level of ductility that qualifies it for use in armour is nanobainite. Research into nanobainitic steels has led to the development of plates manufacturing technology at a level that can be implemented in industrial production, and has confirmed the high potential of this material for use as additional armour in the form of perforated plates. This paper reports the results of research aimed at developing a technology for the production of perforated armour plates made of nanobainitic steel, with properties competitive with currently available perforated steel plates on the world market with the highest protective effectiveness under conditions of multi-hit firing tests with small and medium calibre ammunition. The tests were performed on 300 × 260 mm plates, with the nominal thicknesses of 8 mm, 6 mm and 4 mm, produced from industrially melted nanobainitic steel NANOS-BA®. The protective effectiveness of nanobainitic perforated plates in a system with a solid armour steel backing plate of 500 HBW hardness was tested by multi-hit firing, according to the procedures set out in the STANAG 4569 and AEP-55 vol. 1 specifications (adapted to the format of tested plates), against selected projectile types assigned to protection levels 2 and 3. Based on the analysis of the results of the firing tests and the macroscopic and microscopic examinations of the perforated plates before and after firing, the optimum perforation method was selected and the most favourable geometrical and dimensional arrangements of the perforations were determined for different plate thicknesses.
Celem badań było opracowanie technologii wytwarzania płyt perforowanych ze stali nanobainitycznej o skuteczności ochronnej konkurencyjnej w stosunku do obecnie dostępnych pancernych płyt perforowanych. Płyty perforowane o wymiarach 300 × 260 mm × (4 mm, 6 mm oraz 8 mm) wytworzono ze średniostopowej stali nanobainitycznej zawierającej 0,6% masowych węgla. Wykonano badania metalograficzne za pomocą mikroskopu świetlnego i skaningowego mikroskopu elektronowego oraz pomiary mikrotwardości i twardości. Testy ostrzałem wykonano wg STANAG 4569:ed3:2014 zgodnie z procedurą dostosowaną do wymiarów badanych płyt perforowanych. Wykonanie otworów w płytach metodą obróbki skrawaniem nie zmieniło właściwości mechanicznych w warstwach materiału przylegających do otworów. Wycinanie otworów laserem spowodowało spadek ciągliwości i w rezultacie zarodkowanie pęknięć w trakcie uderzenia pocisku. Wszystkie warianty układów płyt perforowanych o grubości 6 mm z płytami litymi o grubości 6 mm 500 HBW badane ostrzałem amunicją 7,62 × 39 mm-API-BZ spełniły wymagania poziomu 2 STANAG 4569. Układy płyt perforowanych o grubości 4 mm z płytą litą o grubości 4 mm 500 HBW nie spełniły wymagań poziomu 2. W wyniku ostrzału amunicją 7,62 × 54R mm-B32-API układów płyt perforowanych o grubości 8 mm z równoległymi płytami litymi 500 HBW o grubości 6 mm w zakresie poziomu 3 STANAG 4569, uzyskano pozytywne rezultaty dla określonych wariantów. Zaproponowano zmodyfikowane wzory perforacji dla płyt nanobainitycznych do finalnej weryfikacji eksperymentalnej.
Rocznik
Strony
23--60
Opis fizyczny
Bibliogr. 34 poz., fot., rys., tab., wykr.
Twórcy
autor
- Łukasiewicz Research Network - Upper Silesian Institute of Technology 12-14 Karola Miarki Str., 44-100 Gliwice, Poland
autor
- Łukasiewicz Research Network - Upper Silesian Institute of Technology 12-14 Karola Miarki Str., 44-100 Gliwice, Poland
autor
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals 5 Sowińskiego Str., 44-100 Gliwice, Poland
autor
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals 5 Sowińskiego Str., 44-100 Gliwice, Poland
autor
- Łukasiewicz Research Network - Poznań Institute of Technology 6 Ewarysta Erdkowskiego Str., 61-755 Poznań, Poland
autor
- Łukasiewicz Research Network - Poznań Institute of Technology 6 Ewarysta Erdkowskiego Str., 61-755 Poznań, Poland
autor
- CFT Precyzja sp. z o.o. (Ltd) 6 Polna Str., 05-152 Czosnów, Poland
autor
- CFT Precyzja sp. z o.o. (Ltd) 6 Polna Str., 05-152 Czosnów, Poland
Bibliografia
- [1] European Patent Application no 86303640.6. 1986. An armour assembly for armoured vehicles. Date of filing: 13.05.1986.
- [2] United States Patent no 5,014,593. 1989. Perforated plate armor. Filed: Oct. 18, 1989.
- [3] Børvik, Tore, M.J. Forrestal, and T.L. Warren. 2009. “Perforation of 5083-H116 aluminum armor plates with ogive-nose rods and 7.62 mm APM2 bullets”. Experimental Mechanics 50 (7) : 969-978.
- [4] Balos, Sebastian, Vencislav Grabulov, Leposava Sidjanin, Mladen Pantic, and Igor Radisavljevic. 2010. “Geometry, mechanical properties and mounting of perforated plates for ballistic application”. Materials and Design 31 (6) : 2916-2924.
- [5] MIL-PRF-32269 (MR). 2007. Performance Specification-Perforated Homogeneous Steel Armor. 18 October 2007.
- [6] Chocron, Sidney, Charles E. Anderson Jr., Donald J. Grosch, and Carl H. Popelar. 2001. “Impact of the 7.62-mm APM2 projectile against the edge of a metallic target”. International Journal of Impact Engineering 25 : 423-437.
- [7] United States Patent Application no 11A290,451. 2005. Perforated Armor Plates. Filed: Dec. 1, 2005.
- [8] International Patent Application no PCT/US2009/045700. 2009. Perforated Armor with Geometry Modified for Lighter Weight. Filed: May 29, 2009.
- [9] Wiśniewski, Adam, and Paweł Żochowski. 2013. “Add-on passive armour for light armoured vehicles protection”. Problemy Techniki Uzbrojenia 42 (125) : 17-24.
- [10] Stępniak, Wiesław, Wiesław Habaj, and Paweł Podgórzak. 2014. „Pancerze perforowane”. Problemy Mechatroniki. Uzbrojenie, lotnictwo, inżynieria bezpieczeństwa 5 (1) : 59-70.
- [11] https://industeel.arcelormittal.com/news/fichier/ds-protection-mars-650-perforated-en-2021/.
- [12] www.miilux.fi/esitteet/protection500_perforated_datasheet_miilux.pdf.
- [13] https://ploughshare.co.uk/wp-content/uploads/2021/09/Super-Bainite-Steel.pdf.
- [14] ISO 286-2:2010(E) Geometrical product specifications (GPS) - ISO code system for tolerances on linear sizes - Part 2: Tables of standard tolerance classes and limit deviations for holes and shafts.
- [15] ISO 9013 Second edition 2002-09-15 Thermal cutting - Classification of thermal cuts - Geometrical product specification and quality tolerances.
- [16] Balos, Sebastian, Daniel Howard, Adrian Brezulianu, and Danka Labus Zlatanović. 2021. “Perforated Plate for Ballistic Protection-A Review”. Metals 11 (4) : 526-1-18.
- [17] Hazell, J. Paul, Gareth J. Appleby-Thomas, D. Philbey, and W. Tolman. 2013. “The effect of gilding jacket material on the penetration mechanics of a 7.62 mm armour-piercing projectile”. International Journal of Impact Engineering 54 : 11-18.
- [18] Lesmana, Denny, Faizal Arifurrahman, Amer Hameed, Gareth J. Appleby-Thomas, and Sigit P. Santosa. 2020. “On the importance of the bullet jacket during the penetration process: Reversed-ballistic experimental and numerical study”. Journal of Mechanical Science and Technology 34 (5) : 1871-1877.
- [19] Balos, Sebastian, Igor Radisavljevic, Petar Janjatovic, Miroslav Dramicanin, Olivera Eric-Cekic, and Leposava Sidjanin. 2019. “Ballistic Behaviour of Austempered Compacted Graphite Iron Perforated Plates”. Defence Science Journal 69 (6) : 571-576.
- [20] Radisavljevic, Igor, Sebastian Balos, Milutin Nikacevic, and Leposava Sidjanin. 2013. “Optimization of geometrical characteristics of perforated plates”. Materials and Design 49 : 81-89.
- [21] Kilic, Namik, Said Bedir, Atil Erdik, Bulent Ekici, Alper Tasdemirci, and Mustafa Güden. 2014. “Ballistic behavior of high hardness perforated armor plates against 7.62 mm armor piercing projectile”. Materials and Design 63 : 427-438.
- [22] Kilic, Namik, Bulent Ekici, and Said Bedir. 2016. “Optimization of high hardness perforated steel armor plates using finite element and response surface methods”. Mechanics of Advanced Materials and Structures 24 (7) : 615-624.
- [23] Mishra, Bidyapati, B. Ramakrishna, Pradipta Kumar Jena, K. Siva Kumar, Madhu Vemuri, and N.K. Gupta. 2013. “Experimental studies on the effect of size and shape of holes on damage and microstructure of high hardness armour steel plates under ballistic impact”. Materials and Design 43 : 17-24.
- [24] Mishra, Vaibhav, and Vikas Kukshal. 2022. Ballistic Performance of Circular and Oval Shape Perforated Metallic Armour. In: Composite Materials for Extreme Loading- Proceedings of the Indo-Korean workshop on Multi Functional Materials for Extreme Loading 2021(eds: Shankar Krishnapillai, Velmurugan R., and Sung Kyu Ha). Springer, Singapore.
- [25] Fras, Teresa, A. Murzyn, and Piotr Krzysztof Pawlowski. 2017. “Defeat mechanisms provided by slotted add-on bainitic plates against small-calibre 7.62mm AP projectiles”. International Journal of Impact Engineering 103: 241-253.
- [26] Fras, Teresa, Christian C. Roth, and Dirk Mohr. 2018. “Fracture of high-strength armor steel under impact loading”. International Journal of Impact Engineering 111: 147-164.
- [27] Saragosa, James. 2015. Design and Characterization of a Nanoscale Carbide-Free Bainite Alloy. A Thesis for the Degree Master of Science. McMaster University, Hamilton, Ontario.
- [28] Garbarz, Bogdan, and Wojciech Burian. 2014. “Microstructure and Properties of Nanoduplex Bainite-Austenite Steel for Ultra-High-Strength Plates”. Steel Research International 85 (12) : 1620-1628.
- [29] Garbarz, Bogdan, Jarosław Marcisz, Krzysztof Żółkiewski, Paweł Lubowiecki, Bogusław Nowak, Marek Smoleń, and Marcin Skurczyński. 2020. “Industrial technology of manufacturing of ultra-strength nanobainitic steel plates”. Journal of Metallic Materials 72 (2) : 2-22.
- [30] Marcisz, Jarosław, Bogdan Garbarz, Jerzy Stępień, Tymoteusz Tomczak. Lech Starczewski, Robert Nyc, Michał Gmitrzuk, and Marcin Gołuński. 2020. “Protective effectiveness of armour made of nanobainitic steel”. Journal of Metallic Materials 72 (1) : 21-38.
- [31] Marcisz, Jarosław, Bogdan Garbarz, Aleksandra Janik, and Władysław Zalecki. 2021. “Controlling the Content and Morphology of Phase Constituents in Nanobainitic Steel Containing 0.6%C to Obtain the Required Ratio of Strength to Plasticity”. Metals 11 (4) : 658-1-21.
- [32] Burian, Wojciech, Jarosław Marcisz, Lech Starczewski, and Małgorzata Wnuk. 2017. “A Probabilistic Model of Optimising Perforated High-Strength Steel Sheet Assemblies for Impact-Resistant Armour Systems”. Problemy mechatroniki. Uzbrojenie, lotnictwo, inżynieria bezpieczeństwa / Problems of Mechatronics. Armament, Aviation, Safety Engineering 8 (1) : 71-88.
- [33] Burian, Wojciech, Paweł Żochowski, Michał Gmitrzuk, Jarosław Marcisz, Lech Starczewski, Barbara Juszczyk, and Mariusz Magier. 2019. “Protection effectiveness of perforated plates made of high strength steel”. International Journal of Impact Engineering 126 : 27-39.
- [34] https://imz.pl/pl/aktualnosci.php?wid=33&news=253 Walcarka do walcowania na gorąco wraz z urządzeniami do obróbki cieplnoplastycznej (moduł B-LPS).
Uwagi
1. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
2. The research, the results of which are presented in this article, was carried out as part of Project No. 1/Ł- IMŻ/CŁ/2021 “Development of technology and production of perforated armour plates from ultra-high-strength nanobainitic steel” funded by a grant from the Łukasiewicz Centre (Poland).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c74d9e10-dc64-40b5-877a-6c295ed47fe9