Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Symulacja przepływu grawitacyjnego i estymacja jego parametrów przy użyciu elektrycznej tomografii pojemnościowej i sztucznych sieci neuronowych
Języki publikacji
Abstrakty
The paper presents a new approach to monitoring changes of characteristic parameters of gravitational solids flow. Electrical Capacitance Tomography (ECT) is applied for non-invasive process monitoring. Artificial Neural Networks (ANN) are used to estimate important flow parameters knowing the measured capacitances. The proposed approach solves the ECT inverse problem in a direct manner and provides a rapid parameterization of the funnel flow. The simulation of the silo discharging process is performed relying on real flow behaviour obtained from the authors’ previous work. The simulated data are used to new approach testing and verification. The obtained results proved that proposed ANN-based method will allow for on-line gravitational solids flow monitoring.
W artykule opisano nowe podejście do monitorowania zmian charakterystycznych parametrów przepływu grawitacyjnego. Do nieinwazyjnego monitorowania procesu stosowana jest Elektryczna Tomografia Pojemnościowa (ECT). Sztuczne Sieci Neuronowe wykorzystywane są do estymacji ważnych parametrów przepływu na podstawie mierzonych pojemności. Zaproponowane podejście pozwala na rozwiązanie problemu odwrotnego w ECT w sposób bezpośredni i umożliwia natychmiastową parametryzację przepływu kominowego. Symulacja procesu rozładowania silosu została wykonana na podstawie wyników wcześniejszych badań eksperymentalnych przeprowadzonych na rzeczywistym obiekcie. Dane symulacyjne wykorzystano do testowania i weryfikacji nowego podejścia. Uzyskane wyniki wykazały, iż zaproponowana metoda wykorzystująca Sztuczne Sieci Neuronowe pozwoli na monitorowanie on-line parametrów przepływu grawitacyjnego.
Rocznik
Tom
Strony
34--37
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
- Lodz University of Technology, Institute of Applied Computer Science
autor
- Lodz University of Technology, Institute of Applied Computer Science
autor
- Lodz University of Technology, Institute of Applied Computer Science
autor
- Lodz University of Technology, Institute of Applied Computer Science
Bibliografia
- [1] Fiderek P., Wajman R., Kucharski J.: The Fuzzy System for Recognition and Control of the two Phase Gas- Liquid Flows. IAPGOS, 4/2015, 7–11.
- [2] Garbaa H., Jackowska-Strumiłło L., Grudzień K., Romanowski A.: Neural network approach to ECT inverse problem solving for estimation of gravitational solids flow. Proc. of the 2014 Federated Conference on Computer Science and Information Systems (FedCSIS 2014), AAIA’14, Vol. 2, Sep. 7–10, 2014, Warsaw, Poland, 19–26 [DOI:10.15439/2014F368].
- [3] Grudzień K., Romanowski A., Aykroyd R.G., Williams R.A., Mosorov V.: Parametric Modelling Algorithms in Electrical Capacitance Tomography for Multiphase Flow Monitoring, IEEE, MEMSTECH'2006, May 2006, Lviv Polyana, Ukraine, 24–27 [DOI: 10.1109/MEMSTECH.2006.288675].
- [4] Haykin S.: Neural Networks: a comprehensive foundation – 2nd ed. Prentice Hall, 1999.
- [5] Isaksen Ø.: A review of reconstruction techniques for capacitance tomography. Meas. Sci. Technol. 7/1996, 325–33.
- [6] Jackowska-Strumillo L., Sokolowski J., Żochowski A., Henrot A: On Numerical Solution of Shape Inverse Problems. Computational Optimization and Applications 23/2002, 231–255.
- [7] Lei J., Liu S.: Dynamic Inversion Approach for Electrical Capacitance Tomography. IEEE Transactions On Instrumentation And Measurement 11/2013, 3035–3049.
- [8] Lei J., Liu S., Wang X., Liu Q.: An Image Reconstruction Algorithm for Electrical Capacitance Tomography Based on Robust Principle Component Analysis. Sensors 13/2013, 2076–2092.
- [9] Lionheart W.R.B.: Review: Developments in EIT reconstruction algorithms: pitfalls, challenges and recent development. Physiol. Meas. 25/2004, 125–142.
- [10] Ratajewicz-Mikolajczak E., Sikora J.: Neural networks method for identification of the objects behind the screen, IEEE Trans Med Imaging 6/2002, 613–619.
- [11] Rautenbach C., Mudde R.F., Yang X., Melaaen M.C., Halvorsen B.M.: A comparative study between electrical capacitance tomography and timeresolved X-ray tomography. Flow Measurement and Instrumentation 30/2013, 34–44.
- [12] Romanowski A., Grudzień K., Williams R.A.: Analysis and Interpretation of Hopper Behaviour Using ECT. Part. Part. Syst. Charact. 3-4/2006, 297–305.
- [13] Smolik W., Radomski D.: The matlab’s toolbox for iterative image reconstruction in electrical capacitance tomography. 5th Int. Symp. on Process tomography (Poland), 98–103.
- [14] Stasiak M., Sikora J., Filipowicz S.F., Nita K.: Principal component analysis and artificial neural network approach to electrical impedance tomography problems approximated by multi-region boundary element method. Engineering Analyses with Boundary Elements 31/2007, 713–720.
- [15] Warsito W., Fan L.S.: Development of 3-Dimensional Electrical Capacitance Tomography Based on Neural Network Multi-criterion Optimization Image Reconstruction. Proc. of 3rd World Congress on Industrial Process Tomography (Banff) 2003, 942–947.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c7499b67-2916-4fa4-bc1b-24c4f7e1eeaa