PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

First-principle study on the effect of S/Se/Te doping and VZn-Hi coexistence on ZnO electrical conductivity

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In a vacuum environment, when ZnO is prepared using the chemical vapor deposition method and the molecular beam epitaxial growth method, H-gap impurities inevitably remain in the ZnO system, which is often ignored. The study of Zn vacancies under experimental conditions poses a challenge. Second, as an n-type semiconductor, ZnO is characterized by a self-compensation of natural donor defects and poor stability, which severely limit the acquisition of p-type ZnO. Based on the above problems, the conductive properties of S/Se/Te doped and VZn-Hi coexisting ZnO were investigated by first principle to acquire high-stability and high-quality p-ZnO. The study found that Zn35SO35, Zn35SeO35, and Zn35SHiO35 all have good p-type conductivity, which can effectively improve hole mobility and electrical conductivity. Among them, Zn35SO35 has the largest hole concentration at 2.80×1021 cm−3, as well as the best conductivity. The choice of Zn35SO35 provides a reference for obtaining new high-quality p-type ZnO semiconductors.
Słowa kluczowe
Wydawca
Rocznik
Strony
54--63
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
  • College of Science, Inner Mongolia University of Technology, Hohhot, 010051, PR China
autor
  • College of Science, Inner Mongolia University of Technology, Hohhot, 010051, PR China
  • College of Materials Science and Engineering, Inner Mongolia Key Laboratory of Thin Film and Coatings, Inner Mongolia University of Technology, PR China
autor
  • College of Materials Science and Engineering, Inner Mongolia Key Laboratory of Thin Film and Coatings, Inner Mongolia University of Technology, PR China
autor
  • College of Science, Inner Mongolia University of Technology, Hohhot, 010051, PR China
autor
  • College of Science, Inner Mongolia University of Technology, Hohhot, 010051, PR China
Bibliografia
  • [1] Dash P, Manna A, Mishrac NC, Varma S. Synthesis and characterization of aligned ZnO nanorods for visible light photocatalysis. Physica E. 2019;107: 38–6.
  • [2] Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov MA, Doğan S, et al. A comprehensive review of ZnO materials and devices. J Appl Phys. 2005;98: 041301–103.
  • [3] Yu W, Xu D, Peng T. Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism. J Mater Chem. 2015;3: 19936–47.
  • [4] Park TY, Choi YS, Kim SM, Jung GY, Park SJ, Kwon BJ, et al. Electroluminescence emission from light-emitting diode of p-ZnO/(InGaN/GaN) multiquantum well/n-GaN. Appl Phys Lett. 2011;98: 251111–3.
  • [5] Wang H, Li K, Tao Y, Li J, Li Y, Guo LL, et al. Smooth ZnO: Al-AgNWs composite electrode for flexible organic light-emitting device. Nanoscale Res Lett. 2017;12: 77–7.
  • [6] Alfredo BB, Daniel O, Sergio JS. n- to p-type conductivity transition and band-gap renormalization in ZnO: (Cu+Te) codoped films. Phys Rev Mater. 2021;5: 065402–10.
  • [7] Zhang T, Li MK, Chen J, Wang Y, Miao LS, Lu YM, et al. Multi-component ZnO alloys: bandgap engineering, hetero-structures, and optoelectronic devices. Mater Sci Eng R Rep. 2022;147: 100661–34.
  • [8] Niu WZ, Xu HB, Guo YM, Li YG, Ye ZZ, Zhu LP. The effect of sulfur on the electrical properties of S and N co-doped ZnO thin films: experiment and first-principles calculations. Phys Chem Chem Phys. 2015;17: 16705–4.
  • [9] Dib K, Brahimi R, Bessekhouad Y, Tayebi N, Trari M. Structural, optical and transport properties of SxZnO. Mater Sci Semicond Process. 2016;48: 52–9
  • [10] Cai H, Xu HB, Ye ZZ, Huang JY. Realization of p-type Se–N co-doped ZnO films by radio-frequency magnetron sputtering. Mater Lett. 2013;108: 183–5.
  • [11] Tang K, Gu SL, Wu KP, Zhu SM, Ye JD, Zhang R, et al. Tellurium assisted realization of p-type N-doped ZnO. Appl Phys Lett. 2010;96: 1830–4.
  • [12] Park S, Minegishi T, Oh D, Lee H, Taishi T, Park J, et al. High-quality p-type ZnO films grown by co-doping of N and Te on Zn-Face ZnO Substrates. Appl Phys Express. 2010;3: 031103–3.
  • [13] Persson C, Platzer-Björkman C, Malmström J, Törndahl T, Edoff M. Strong valence-band offset bowing of ZnO1−−xSx enhances p-type nitrogen doping of ZnO-like alloys. Phys Rev Lett. 2006;97: 146403–4.
  • [14] Hou QY, Qi MD, Li Y. Effects of p-type conductive properties of triaxial strain-regulated ZnO (S, Se, Te) system. Phys Scr. 2021;96: 125815–11.
  • [15] Liu YX, Zhang HL, Zhang ZX, Xie YZ, Xie EY. Conversion of p-type to n-type conductivity in undoped ZnO films by increasin operating temperature. Appl Surf Sci. 2010;257: 1236–8.
  • [16] Zeng YJ, Ye ZZ, Xu WZ, Lu JG, He HP, Zhao BH, et al. p-type behavior in nominally undoped ZnO thin films by oxygen plasma growth. Appl Phys Lett. 2006;88: 262103–3.
  • [17] Gu T, Hu ET, Guo S, Wu Y, Wang J, Wang ZY, et al. Ellipsometric study on optical properties of hydrogen plasma-treated aluminum-doped ZnO thin film. Vacuum. 2019;163: 69–74.
  • [18] Dib K, Brahimi R, Trari M, Bessekhouad Y. Optical properties of SxZnO and their effect toward the photoacativity. Optik. 2019;178: 1102–10.
  • [19] Welna M, Baranowski M, Linhart WM, Kudrawiec R, Yu KM, Mayer M, et al. Multicolor emission from intermediate band semiconductor ZnO1−xSex. Sci Rep. 2017;7: 44214–6.
  • [20] Sahu R, Dileep K, Negi DS, Nagaraja KK, Datta R. Ambipolar behavior of Te and its effect on the optical emission of ZnO: Te epitaxial thin film. Phys Status Solidi. 2015;252: 1743–8.
  • [21] Wu LQ, Li SQ, Li YC, Li ZZ, Tang GD, Qi WH, et al. Presence of monovalent oxygen anions in oxides demonstrated using X-ray photoelectron spectra. Appl Phys Lett. 2016;108: 173.
  • [22] Ghosh S, Khan GG, Das B, Mandal K. Vacancy-induced intrinsic d 0 ferromagnetism and photoluminescence in potassium doped ZnO nanowires. J Appl Phys. 2011;109: 951.
  • [23] Pickett WE, Erwin SC, Ethridge EC. Reformulation of the LDA+U method for a local orbital basis. Phys Rev B. 1998;58: 1201–9.
  • [24] Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77: 3865–8.
  • [25] Jia XF, Hou QY, Xu ZC, Qua LF. Effect of Ce doping on the magnetic and optical properties of ZnO by the first principle. J Magn Magn Mater. 2018;465: 128–35.
  • [26] Guo SQ, Hou QY, Zhao CW, Zhang Y. Study of the effect of Cu heavy doping on band gap and absorption spectrum of ZnO. Chem Phys Lett. 2014;614: 15–20.
  • [27] Liu YJ, Hou QY, Sha SL, Xu ZC. Electronic structure, optical and ferromagnetic properties of ZnO co-doped with Ag and Co according to first-principles calculations. Vacuum. 2020;173: 109127.
  • [28] Jaballah S, Benamara M, Dahman H, Ly A, Lahem D, Debliquy M, et al. Effect of Mg-doping ZnO nanoparticles on detection of low ethanol concentrations. Mater Chem Phys. 2020;255: 123643–11.
  • [29] Rahm M, Hoffmann R, Ashcroft NW. Atomic and ionic radii of elements 1–96. Chem Eur J. 2016;22: 1–9.
  • [30] Li M, Zhang JY, Zhang Y. First-principles calculation of compensated (2N, W) codoping impacts on band gap engineering in anatase TiO2. Chem Phys Lett. 2012;527: 63–6.
  • [31] Cui XY, Medvedeva JE, Delley B, Freeman AJ, Newman N, Stampfl C. Role of embedded clustering in dilute magnetic semiconductors: Cr doped GaN. Phys Rev Lett. 2005;95: 256404–4
  • [32] Chris G, Vande W. Interactions of hydrogen with native defects in GaN. Phys Rev B. 1997;56: R10 020–23.
  • [33] Sun PP, Bai LC, Kripalani DR, Zhou K. A new carbon phase with direct bandgap and high carrier mobility as electron transport material for perovskite solarcells. NPJ Comput Mater. 2019;5: 1–7.
  • [34] Deb J, Seriani N, Sarkar U. Ultrahigh carrier mobility of penta-graphene: a first-principle study. Physica E. 2021;127: 114507–7.
  • [35] Hou QY, Sha SL. Effect of biaxial strain on the p-type of conductive properties of (S, Se, Te) and 2 N co-doped ZnO. Mater Today Commun. 2020;24: 101063–7.
  • [36] Janotti A, Van de Walle CG. Fundamentals of zinc oxide as a semiconductor. Rep Prog Phys. 2009;72: 126501–29.
  • [37] Yu WL, Zhang JF, Peng TY. New insight into the enhanced photocatalytic activity of N-, C- and S-doped ZnO photocatalysts. Appl Catal B: Environ. 2016;181: 220–7.
  • [38] Perdew JP, Mel L. Physical content of the exact Kohn–Sham orbital energies: band gap and derivative discontinuities. Phys Rev Lett. 1983;51: 1884–7.
  • [39] Xu ZC, Hou QY, Qu LF. Effects on the optical properties and conductivity of Ag–N co-doped ZnO. Int J Mod Phys B. 2017;31: 1750008–18.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c748545e-8279-4aa9-af98-826c90864b69
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.