PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical investigations of the thermal properties of window systems: a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Przegląd numerycznych metod określania właściwości cieplnych okien
Języki publikacji
EN
Abstrakty
EN
Windows are an essential part of building envelopes since they enhance the appearance of the building, allow daylight and solar heat to come in, and allow people to observe outside. However, conventional windows tend to have poor U-values, which cause significant heat losses during the winter season and undesired heat gain in summer. Modern glazing technologies are therefore required to improve thermal resistance and comfort of the occupants, whilst mitigating the energy consumption of buildings. In the present work, a comprehensive review of the numerical investigations of the thermal properties of window systems and glazed buildings partitions is presented. However, the proposed models to predict the thermal performance most often concern only specific cases of window systems related to geometry and used material solutions, focused on specific physical processes, thus they contain a lot of simplifications, such as omitting the influence of radiation, temperature changes or velocity profiles.
PL
Istotnymi elementami budynków są okna, które wpływają na ich wygląd, umożliwiają dostęp światła dziennego i ciepła pochodzącego z promieniowania słonecznego, a także pozwalają na obserwowanie otoczenia. Jednakże w porównaniu do pozostałych przegród budowlanych konwencjonalne okna charakteryzują się zwykle gorszymi wartościami współczynnika przenikania ciepła U, generując znaczne straty ciepła w sezonie zimowym i niepożądane zyski ciepła w lecie. W związku z tym konieczne jest poszukiwanie nowoczesnych rozwiązań w technologii okiennej, które poprawią opór cieplny i komfort mieszkańców, jednocześnie zmniejszając zużycie energii przez budynki. W niniejszej pracy przedstawiono przegląd numerycznych metod określania właściwości cieplnych okien i przeszklonych przegród budowlanych. Analiza literatury pokazuje, że proponowane modele dotyczą jednak najczęściej tylko konkretnych przypadków systemów okiennych, związanych z określoną geometrią i zastosowanymi rozwiązaniami materiałowymi, w których uwzględnia się jedynie wybrane procesy fizyczne. Skutkiem tego jest przyjmowanie podczas modelowania wymiany ciepła szeregu uproszczeń, takich jak pomijanie wpływu promieniowania czy nieuwzględnianie zmian temperatury i prędkości.
Rocznik
Strony
126--141
Opis fizyczny
Bibliogr. 101 poz., rys., tab., wykr., wzory
Twórcy
  • Kielce University of Technology, Poland
  • Kielce University of Technology, Poland
Bibliografia
  • [1] Fasi M.A., Budaiwi I.M.: Energy performance of windows in office buildings considering daylight integration and visual comfort in hot climates, Energy and Buildings, 108 (2015), pp. 307-316, https://doi.org/10.1016/j.enbuild.2015.09.024.
  • [2] Rezaei S.D., Shannigrahi S., Ramakrishna S.: A review of conventional, advanced, and smart glazing technologies and materials for improving indoor environment, Sol. Energy Mater. Sol. Cells, 159 (2017), pp. 26-51, https://doi.org/10.1016/j.solmat.2016.08.026.
  • [3] Sun Y., Liang R., Wu Y., Wilson R., Rutherford P.: Development of a comprehensive method to analyze glazing systems with Parallel Slat Transparent Insulation material (PS-IM). Applied Energy, 205 (2017), pp. 951-63, https://doi.org/10.1016/j.apenergy.2017.08.041.
  • [4] Cuce E., Riffat S.B.: A state-of-the-art review on innovative glazing technologies, Renewable and Sustainable Energy Reviews, 41 (2015), pp. 695-714, https://doi.org/10.1016/j.rser.2014.08.084.
  • [5] Wang B., Koh W.S., Liu H., Yik J., Bui V.P.: Simulation and validation of solar heat gain in real urban environments, Build. Environ., 123 (2017), pp. 261-276, https://doi.org/10.1016/j.buildenv.2017.07.006.
  • [6] Wang Y., Shukla A., Liu S.: A state of art review on methodologies for heat transfer and energy flow characteristics of the active building envelopes, Renew. Sustain. Energy Rev., 78 (2017), pp. 1102-1116, https://doi.org/10.1016/j.rser.2017.05.015.
  • [7] Tian Z., Zhang X., Jin X., Zhou X., Shi X.: Towards adoption of building energy simulation and optimization for passive building design: a survey and a review, Energy Build., 158(1), (2018), pp. 1306-1316, https://doi.org/10.1016/j.enbuild.2017.11.022.
  • [8] Lizana J., Chacartegui R., Padura A.B., Ortiz C.: Advanced low-carbon energy measures based on thermal energy storage in buildings: a review, Renewable and Sustainable Energy Reviews, 82(3), (2018), pp. 3705-3749, https://doi.org/10.1016/j.rser.2017.10.093.
  • [9] Casini M.: Active dynamic windows for buildings: a review, Renewable Energy, 119 (2018), pp. 923-934, https://doi.org/10.1016/j.renene.2017.12.049.
  • [10] Hee W.J., Alghoul M.A., Bakhtyar B., OmKalthum E., Sopian K.: The role of window glazing on daylighting and energy saving in buildings, a review, Renewable and Sustainable Energy Reviews, 42 (2015), pp. 323-343, https://doi.org/10.1016/j.rser.2014.09.020.
  • [11] Aguilar-Santana J.L., Velasco-Carrasco M., Riffat S.: Thermal Transmittance (U-value) Evaluation of Innovative Window Technologies, Future Cities and Environment, 6(1), (2020), pp. 12, http://doi.org/10.5334/fce.99.
  • [12] Sun Y., Wu Y., Wilson R.: A review of thermal and optical characterisation of complex window systems and their building performance prediction, Appl. Energy, 222(15), (2018), pp. 729-747, https://doi.org/10.1016/j.apenergy.2018.03.144.
  • [13] Basok B., Davydenko B., Novikov V., Pavlenko A.M., Novitska M., Sadko K., Goncharuk S.: Evaluation of Heat Transfer Rates through Transparent Dividing Structures, Energies, 15(13), (2022), pp. 4910, https://doi.org/10.3390/en15134910.
  • [14] Gorantla K., Shaik S., Setty A.B.T.P.: Effects of single, double, triple and quadruple window glazing of various glass materials on heat gain in green energy buildings, Energy and Environment Engineering, (2017), pp. 45-50, https://doi.org/10.1007/978-981-10-2675-1_5.
  • [15] Arıcı M., Karabay H., Kan M.: Flow and heat transfer in double, triple and quadruple pane windows, Energy Build., 86 (2015), pp. 394-402, https://doi.org/10.1016/j.enbuild.2014.10.043.
  • [16] Gan G.: Thermal transmittance of multiple glazing: computational fluid dynamics prediction, Applied Thermal Engineering, 21(15), (2001), pp. 1583-1592, https://doi.org/10.1016/S1359-4311(01)00016-3.
  • [17] Aydın O.: Conjugate heat transfer analysis of double pane windows, Building and Environment, 41(2), (2006), pp. 109-116, https://doi.org/10.1016/j.buildenv.2005.01.011.
  • [18] Arıcı M., Kan M.: An investigation of flow and conjugate heat transfer in multiple pane windows with respect to gap width, emissivity and gas filling, Renewable Energy, 75 (2015), pp. 249-256, https://doi.org/10.1016/j.renene.2014.10.004.
  • [19] Arıcı M., Karabay H.: Determination of optimum thickness of double-glazed windows for the climatic regions of Turkey. Energy and Buildings, 42 (2010), pp. 1773-1778, https://doi.org/10.1016/j.enbuild.2010.05.013.
  • [20] Ismail K.A.R., Salinas C.T., Henríquez J.R.: A comparative study of naturally ventilated and gas filled windows for hot climates. Energy Convers. Manage., 50 (2009), pp. 1691-1703, https://doi.org/10.1016/j.enconman.2009.03.026.
  • [21] Park S., Song S-Y.: Evaluation of Alternatives for Improving the Thermal Resistance of Window Glazing Edges, Energies, 12 (2019), 244, https://doi.org/10.3390/en12020244.
  • [22] Eames P.: Vacuum glazing: current performance and future prospects, Vacuum, 82 (2008), pp. 717-722, https://doi.org/10.1016/j.vacuum.2007.10.017.
  • [23] Fang Y., Eames P.C., Norton B., Hyde T.J., Zhao J., Wang J., Huang Y.: Low emittance coatings and the thermal performance of vacuum glazing, Solar Energy, 81 (2007), pp. 8-12, https://doi.org/10.1016/j.solener.2006.06.011.
  • [24] Wąs K., Radoń J., Sadłowska-Sałęga A.: Thermal Comfort - Case Study in a Lightweight Passive House, Energies, 15 (2022), 4687, https://doi.org/10.3390/en15134687.
  • [25] Souviron J., van Moeseke G., Khan A.Z.: Analysing the environmental impact of windows: A review, Building and Environment, 161 (2019), 106268, https://doi.org/10.1016/j.buildenv.2019.106268.
  • [26] Pal S., Roy B., Neogi S.: Heat transfer modelling on windows and glazing under the exposure of solar radiation, Energy and Buildings, 41(6), (2009), pp. 654-661, https://doi.org/10.1016/j.enbuild.2009.01.003.
  • [27] Xamán J., Jiménez-Xamán C., Álvarez G., Zavala-Guillén I., Hernández-Pérez I., Aguilar J.O.: Thermal performance of a double pane window with a solar control coating for warm climate of Mexico, Applied Thermal Engineering, 106 (2016), pp. 257-265, https://doi.org/10.1016/j.applthermaleng.2016.06.011.
  • [28] Pereira J., Gomes M.G., Rodrigues A.M., Almeida M.: Thermal, luminous and energy performance of solar control films in single-glazed windows: Use of energy performance criteria to support decision making, Energy Build., 148(198), (2019), pp. 431-443, https://doi.org/10.1016/j.enbuild.2019.06.003.
  • [29] Teixeira H., Gomes M.G., Rodrigues A.M., Pereira J.: Thermal and visual comfort, energy use and environmental performance of glazing systems with solar control films, Build. Environ., 168 (2020), 106474, https://doi.org/10.1016/j.buildenv.2019.106474.
  • [30] Bavaresco M.V., Ghisi E.: Influence of user interaction with internal blinds on the energy efficiency of office buildings, Energy Build., 166(1), (2018), pp. 538-549, https://doi.org/10.1016/j.enbuild.2018.02.011.
  • [31] Jain S., Garg V.: A review of open loop control strategies for shades, blinds and integrated lighting by use of real-time daylight prediction methods, Build. Environ., 135(1), (2018), pp. 352-364, https://doi.org/10.1016/j.buildenv.2018.03.018.
  • [32] Lee A.D., Shepherd P.: Evernden M.C., Metcalfe D., Optimizing the architectural layouts and technical specifications of curtain walls to minimize use of aluminium, Structures, 13 (2018), pp. 8-25, https://doi.org/10.1016/j.istruc.2017.10.004.
  • [33] Bedon C., Zhang X., Santos F., Honfi D., Lange D.: Performance of structural glass facades under extreme loads - design methods, existing research, current issues and trends, Constr. Build. Mater., 163(28), (2018), pp. 921-937, https://doi.org/10.1016/j.conbuildmat.2017.12.153.
  • [34] Ghosh A., Neogi S.: Effect of fenestration geometrical factors on building energy consumption and performance evaluation of a new external solar shading device in warm and humid climatic condition, Sol. Energy, 169(15), (2018), pp. 94-104, https://doi.org/10.1016/j.solener.2018.04.025.
  • [35] Lai K., Wang W., Giles H.: Solar shading performance of window with constant and dynamic shading function in different climate zones, Sol. Energy, 147(1), (2017), pp. 113-125, https://doi.org/10.1016/j.solener.2016.10.015.
  • [36] Silva T., Vicente R., Amaral C., Figueiredo A.: Thermal performance of a window shutter containing PCM: numerical validation and experimental analysis, Appl. Energy, 179(1), (2016), pp. 64-84, https://doi.org/10.1016/j.apenergy.2016.06.126.
  • [37] Naylor D., Lai B.Y.: Experimental study of natural convection in a window with a between-panes Venetian blind, Experimental Heat Transfer, 20 (2007), pp. 1-17, https://doi.org/10.1080/08916150600977358.
  • [38] Dalal R., Naylor D., Roeleveld D.: A CFD study of convection in a double glazed window with an enclosed pleated blind, Energy Build, 41 (2009), pp. 1256-1262, https://doi.org/10.1016/j.enbuild.2009.07.024.
  • [39] Collins M., Tasnim S., Wright J.: Numerical analysis of convective heat transfer in fenestration with between-the-glass louvered shades, Build Environ, 44 (2009), pp. 2185-2192, https://doi.org/10.1016/j.buildenv.2009.03.017.
  • [40] Granqvist C., Bayrak P.I., Niklasson G.A.: Electrochromics on a roll: web-coating and lamination for smart windows, Surf. Coat. Technol., 336 (2018), pp. 133-138, https://doi.org/10.1016/j.surfcoat.2017.08.006.
  • [41] Ji C., Wu Z., Wu X., Wang J., Jiang Y.: Al-doped VO2 films as smart window coatings: reduced phase transition temperature and improved thermochromic performance, Solar Energy Mater. Sol. Cells, 176 (2018), pp. 174-180, https://doi.org/10.1016/j.solmat.2017.11.026.
  • [42] Wu Y., Krishnan P., Zhang M.H., Yu L.E.: Using photocatalytic coating to maintain solar reflectance and lower cooling energy consumption of buildings, Energy Build., 164(1), (2018), pp. 176-186, https://doi.org/10.1016/j.enbuild.2018.01.011.
  • [43] Feist W., Schnieders J., Dorer V., Haas A.: Re-inventing air heating: Convenient and comfortable within the frame of the Passive House concept, Energy Build., 37 (2005), pp. 1186-1203, https://doi.org/10.1016/j.enbuild.2005.06.020.
  • [44] Danza L., Barozzi B., Belussi L., Meroni I., Salamone F.: Assessment of the Performance of a Ventilated Window Coupled with a Heat Recovery Unit through the Co-Heating Test. Buildings, 6 (2016), 3, https://doi.org/10.3390/buildings6010003.
  • [45] Zhang C., Wang J., Xu X., Zou F., Yu J.: Modeling and thermal performance evaluation of a switchable triple glazing exhaust air window, Applied Thermal Engineering, 92 (2016), pp. 8-17, https://doi.org/10.1016/j.applthermaleng.2015.09.080.
  • [46] Khalvati F., Omidvar A.: Summer study on thermal performance of an exhausting airflow window in evaporatively-cooled buildings, Appl. Therm. Eng., 153(2019), pp. 147-158, https://doi.org/10.1016/j.applthermaleng.2019.02.135.
  • [47] Carlos J.S.: Optimizing the ventilated double window for solar collection, Solar Energy, 150 (2017), pp. 454-462, https://doi.org/10.1016/j.solener.2017.04.063.
  • [48] Bhamjee M., Nurick A., Madyira D.M.: An experimentally validated mathematical and CFD model of a supply air window: Forced and natural flow, Energy and Buildings, 57 (2013), pp. 289-301, https://doi.org/10.1016/j.enbuild.2012.10.043.
  • [49] Fallahi A., Haghighat F., Elsadi H.: Energy performance assessment of double-skin façade with thermal mass, Energy Build, 42 (2010), pp. 1499-1509, https://doi.org/10.1016/j.enbuild.2010.03.020.
  • [50] Ding C., Ngo T., Mendis P., Lumantarna R., Zobec M.: Dynamic response of double skin façades under blast loads, Engineering Structures, 123 (2016), pp. 155-165, https://doi.org/10.1016/j.engstruct.2016.05.051.
  • [51] Zanghirella F., Perino M., Serra V.: A numerical model to evaluate the thermal behaviour of active transparent façades. Energy Build, 43 (2011), pp. 1123-1138, https://doi.org/10.1016/j.enbuild.2010.08.031.
  • [52] Ghadamian H., Ghadimi M., Shakouri M., Moghadasi M.: Analytical solution for energy modeling of double skin façades building, Energy Build., 50 (2012), p. 50, 158-165, https://doi.org/10.1016/j.enbuild.2012.03.034.
  • [53] ISO 10292: Glass in building - Calculation of steady-state U values (thermal transmittance) of multiple glazing; 1994.
  • [54] ISO 15099: Thermal performance of windows, doors and shading devices - Detailed calculations; 2003.
  • [55] EN 673: Glass in building - Determination of thermal transmittance (U value) - Calculation method; 2011.
  • [56] Cengel Y.A.: Heat Transfer: A Practical Approach, 2nd ed., McGraw-Hill, 2003.
  • [57] Giorgi L., Bertola V., Cafaro E.: Thermal convection in double glazed windows with structured gap, Energy and Buildings, 43(8), (2011), pp. 2034-2038, https://doi.org/10.1016/j.enbuild.2011.03.043.
  • [58] Gosselin J.R., Chen Q.: A computational method for calculating heat transfer and airflow through a dual-airflow window, Energy Build, 40 (4), (2008), pp. 452-458, https://doi.org/10.1016/j.enbuild.2007.03.010.
  • [59] Najaf Khosravi S., Mahdavi A.: A CFD-Based Parametric Thermal Performance Analysis of Supply Air Ventilated Windows, Energies, 14 (2021), p. 2420, https://doi.org/10.3390/en14092420.
  • [60] Xamán J., Olazo-Gómez Y., Chávez Y., Hinojosa J.F., Hernández-Pérez I., Hernández-López I., Zavala-Guillén I.: Computational fluid dynamics for thermal evaluation of a room with a double glazing window with a solar control film, Renewable Energy, 94 (2016), pp. 237-250, https://doi.org/10.1016/j.renene.2016.03.055.
  • [61] Ganguli A.A., Pandit A.B., Joshi J.B.: CFD simulation of heat transfer in a two-dimensional vertical enclosure, Chem Eng Res Des, 87 (2009), pp. 711-727, https://doi.org/10.1016/j.cherd.2008.11.005.
  • [62] Ganguli A.A., Pandit A.B., Joshi J.B.: Numerical predictions of flow patterns due to natural convection in a vertical slot, Chem Eng Sci, 62 (2007), pp. 4479-4495, https://doi.org/10.1016/j.ces.2007.05.017.
  • [63] Basok B., Davydenko B., Isaev S.A., Goncharuk S.M., Kuzhel L.N.: Numerical modeling of heat transfer through a triple-pane window, Journal of Engineering Physics and Thermophysics, 89(5), (2016), pp. 1277-1283, https://doi.org/10.1007/s10891-016-1492-7.
  • [64] Manz H.: Numerical simulation of heat transfer by natural convection in cavities of facade elements, Energy and Buildings, 35 (2003), pp. 305-311, https://doi.org/10.1016/S0378-7788(02)00088-9.
  • [65] Xaman J., Alvarez G., Lira L., Estrada C.: Numerical study of heat transfer by laminar and turbulent natural convection in tall cavities of façade elements, Energy and Buildings, 37 (2005), pp. 787-794, https://doi.org/10.1016/j.enbuild.2004.11.001.
  • [66] Respondek Z.: Heat Transfer Through Insulating Glass Units Subjected to Climatic Loads, Materials, 13 (2020), 286. https://doi.org/10.3390/ma13020286.
  • [67] Banionis K., Kumžienė J., Burlingis A., Ramanauskas J., Paukštys V.: The Changes in Thermal Transmittance of Window Insulating Glass Units Depending on Outdoor Temperatures in Cold Climate Countries, Energies, 14 (2021), 1694, https://doi.org/10.3390/en14061694.
  • [68] Ismail K.A.R., Henríquez J.R.: Two-dimensional model for the double glass naturally ventilated window, International Journal of Heat and Mass Transfer, 48 (2005), pp. 461-475, https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.022.
  • [69] Chow T., Li V., Lin Z.: Innovative solar windows for cooling-demand climate, Solar Energy Materials and Solar Cells, 94(2), (2010), pp. 212-220, https://doi.org/10.1016/j.solmat.2009.09.004.
  • [70] Rosenfeld J.L.J., Platzer W.J., van Dijk H., Maccari A.: Modelling the optical and thermal properties of complex glazing: overview of recent developments, Solar Energy, 69(6), (2001), pp. 1-13, https://doi.org/10.1016/S0038-092X(01)00028-7
  • [71] Van Nijnatten P.A.: A spectrophotometer accessory for directional reflectance and transmittance of coated glazing, Solar Energy, 73 (2002), pp. 137-149, https://doi.org/10.1016/S0038-092X(02)00047-6.
  • [72] Chaiyapinunt S., Phueakphongsuriya B., Mongkornsaksit K., Khomporn N.: Performance rating of glass windows and glass windows with films in aspect of thermal comfort and heat transmission, Energy and Buildings, 37 (2005), pp. 725-738, https://doi.org/10.1016/j.enbuild.2004.10.008.
  • [73] Ismail K.A.R., Henríquez J.R.: Thermally effective windows with moving phase change material curtains, Applied Thermal Engineering, 21 (2001), pp. 1909-1923, https://doi.org/10.1016/S1359-4311(01)00058-8.
  • [74] Ismail K.A.R., Henríquez J.R.: Modeling and simulation of a simple glass window, Solar Energy Materials and Solar Cells, 80 (2003), pp. 355-374, https://doi.org/10.1016/j.solmat.2003.08.010.
  • [75] Ismail K.A.R., Henríquez J.R.: Simplified model for a ventilated glass window under forced air flow conditions, Applied Thermal Engineering, 26 (2006), pp. 295-302, https://doi.org/10.1016/j.applthermaleng.2005.04.023.
  • [76] Jaber S., Ajib S.: Thermal and economic windows design for different climate zones, Energy Build, 43 (2011), pp. 3208-3215, https://doi.org/10.1016/j.enbuild.2011.08.019.
  • [77] Alvarez G., Flores J.J., Aguilar J.O., Gomez-Daza O., Estrada C.A., Nair M.T.S., Nair P.K.: Spectrally selective laminated glazing consisting of solar control and heat mirror coated glass: preparation, characterization and modeling of heat transfer, Solar Energy, 78 (2005), pp. 113-124, https://doi.org/10.1016/j.solener.2004.06.021.
  • [78] Oliveti G., Arcuri N., Bruno R., De Simone M.: An accurate calculation model of solar heat gain through glazed surfaces, Energy and Buildings, 43 (2-3), 2011, pp. 269-274, https://doi.org/10.1016/j.enbuild.2010.11.009.
  • [79] Avedissian T., Naylor D.: Free convective heat transfer in an enclosure with an internal louvered blind, Int International Journal of Heat and Mass Transfer, 51(1-2), (2008), pp. 283-293, https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.042.
  • [80] Sun Y., Wu Y., Wilson R., Sun S.: Thermal evaluation of a double glazing façade system with integrated Parallel Slat Transparent Insulation Material (PS-TIM), Build Environ, 105 (2016), pp. 69-81, https://doi.org/10.1016/j.buildenv.2016.05.004.
  • [81] Wang T.P., Wang L., Li B.: A model of the long-wave radiation heat transfer through a glazing, Energy and Buildings, 59 (2013), pp. 50-61, https://doi.org/10.1016/j.enbuild.2012.12.027.
  • [82] Han J., Lu L., Yang H.: Numerical evaluation of the mixed convective heat transfer in a double-pane window integrated with see-through a-Si PV cells with low-e coatings, Applied Energy, 87(11), (2010), pp. 3431-3437, https://doi.org/10.1016/j.apenergy.2010.05.025.
  • [83] Romaní J., Ramos A., Salom J.: Review of Transparent and Semi-Transparent Building-Integrated Photovoltaics for Fenestration Application Modeling in Building Simulations, Energies, 15(9), (2022), 3286, https://doi.org/10.3390/en15093286.
  • [84] Infield D., Mei L., Eicker U.: Thermal performance estimation for ventilated PV facades, Solar Energy, 76 (2004), pp. 93-98, https://doi.org/10.1016/j.solener.2003.08.010.
  • [85] Misara S., Henze N., Sidelev A.: Thermal Behaviours of BIPV-Modules (U-Value and g-Value), In Proceedings of the 26th European Photovoltaic Solar Energy Conference and Exhibition, 2011, pp. 4107-4115, https://doi.org/10.4229/26thEUPVSEC2011-5BV.1.17.
  • [86] Han J., Lu L., Peng J., Yang H.: Performance of ventilated double-sided PV façade compared with conventional clear glass façade, Energy Build, 56 (2013), pp. 204-209, https://doi.org/10.1016/j.enbuild.2012.08.017.
  • [87] Chow T.T., Fong K.F., He W., Lin Z., Chan A.L.S.: Performance evaluation of a PV ventilated window applying to office building of Hong Kong, Energy Build, 39 (2007), pp. 643-650, https://doi.org/10.1016/j.enbuild.2006.09.014
  • [88] Han J., Lu L., Yang H.: Thermal behavior of a novel type see-through glazing system with integrated PV cells, Build. Env, 44 (2009), pp. 2129-2136, https://doi.org/10.1016/j.buildenv.2009.03.003.
  • [89] Kapsis K., Athienitis A.K.: A study of the potential benefits of semi-transparent photovoltaics in commercial buildings, Sol. Energy, 115 (2015), pp. 120-132, https://doi.org/10.1016/j.solener.2015.02.016.
  • [90] Ng P.K., Mithraratne N., Kua H.W.: Energy analysis of semi-transparent BIPV in Singapore buildings, Energy Build, 66 (2013), pp. 274-281, https://doi.org/10.1016/j.enbuild.2013.07.029.
  • [91] Gevers R.H., Pretorius J.H.C., van Rhyn P.: Novel approach for concentrating and harvesting solar radiation in hybrid transparent photovoltaic façade’s in Southern Africa, Renew. Energy Power Qual. Journal, 1 (2015), pp. 245-250, https://doi.org/10.24084/repqj13.295.
  • [92] Nourozi B., Ploskić A., Chen Y., Ning-Wei Chiu J., Wang Q.: Heat transfer model for energy-active windows - An evaluation of efficient reuse of waste heat in buildings, Renew. Energy, 162 (2020), pp. 2318-2329, https://doi.org/10.1016/j.renene.2020.10.043.
  • [93] Churchill S.W., Chu H.H.S.: Correlating equations for laminar and turbulent free convection from a vertical plate, International Journal of Heat and Mass Transfer, 18(11), (1975), pp. 1323-1329, https://doi.org/10.1016/0017-9310(75)90243-4.
  • [94] Jelle B.P., Kalnæs S.E., Gao T.: Low-emissivity materials for building applications: A state-of-the-art review and future research perspectives, Energy and Buildings, 96 (2015), pp. 329-356, https://doi.org/10.1016/j.enbuild.2015.03.024.
  • [95] Brzezicki M.: A Systematic Review of the Most Recent Concepts in Smart Windows Technologies with a Focus on Electrochromics, Sustainability, 13 (2021), 9604, https://doi.org/10.3390/su13179604.
  • [96] Aburas M., Soebarto V., Williamson T., Liang R., Ebendorff-Heidepriem H., Wu Y.: Thermochromic smart window technologies for building application: A review, Applied Energy, 255 (2019), 113522, https://doi.org/10.1016/j.apenergy.2019.113522.
  • [97] Sun Y., Liu X., Ming Y., Liu X., Mahon D., Wilson R., Liu H., Eames P., Wu Y.: Energy and daylight performance of a smart window: Window integrated with thermotropic parallel slat-transparent insulation material, Applied Energy, 293 (2021), p. 116826, https://doi.org/10.1016/j.apenergy.2021.116826.
  • [98] Heidari M.N., Eydgahi A., Matin P.: The Effect of Smart Colored Windows on Visual Performance of Buildings, Buildings, 12 (2022), 861, https://doi.org/10.3390/buildings12060861.
  • [99] Feng W., Zou L., Gao G., Wu G., Shen J., Li W.: Gasochromic smart window: optical and thermal properties, energy simulation and feasibility analysis, Solar Energy Materials and Solar Cells, 144 (2016), pp. 316-323, https://doi.org/10.1016/j.solmat.2015.09.029.
  • [100] Zhou Y., Fan F., Liu Y., Zhao S., Xu Q., Wang S., Luo D., Long Y.: Unconventional smart windows: Materials, structures and designs, Nano Energy, 90 (2021), 106613, https://doi.org/10.1016/j.nanoen.2021.106613.
  • [101] Heiz B.P.V., Pan Z., Su L., Le S.T., Wondraczek L.: A large-area smart window with tunable shading and solar-thermal harvesting ability based on remote switching of a magneto-active liquid, Adv. Sustain. Syst., 2 (2018), 1870001, https://doi.org/10.1002/adsu.201700140.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c747219e-935d-441b-8448-1eb317e4e456
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.