PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phase change materials as integrated functional components in modern electroceramics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cordierite and Li2CuPO4 synthesis were endeavored using the solid-phase reaction or wet chemistry methods. Excellent microencapsulation of the [Erythritol]-HDPE composite was demonstrated, while the [Luxolina]-TEOS system exposes low affinity to the core-shell structure. The thermal properties of electroceramics and PCM (phase change material) composite were characterized by the heating rate index (fh), heating lag factor (jh), and temperature stability time (ts).
Rocznik
Strony
139--144
Opis fizyczny
Bibliogr. 25 poz., rys., tab., fot.
Twórcy
  • Łukasiewicz Research Network–Institute of Microelectronics and Photonics, Cracow
  • Łukasiewicz Research Network–Institute of Microelectronics and Photonics, Cracow
  • Jagiellonian University
  • Łukasiewicz Research Network–Institute of Microelectronics and Photonics, Cracow
  • Łukasiewicz Research Network–Institute of Microelectronics and Photonics
Bibliografia
  • [1] V. Bianco, M. De Rosa, K. Vafai, “Phase-change materials for thermal management of electronic devices”, Appl. Therm. Eng., vol. 214, pp. 118839, 2022. https://doi.org/10.1016/j.applthermaleng.2022.118839
  • [2] Z. Khan, “A review of phase change materials (PCMs) in electronic device cooling applications”, Future Technology, vol. 1, no. 2, pp. 36-45, 2022.
  • [3] Y. Yao, W. Li, J. Liu, Z. Deng, “Liquid metal phase change materials for thermal management of electronics”, Adv. Phys.: X, vol. 9, no. 1, pp. 1-48, 2024. https://doi.org/10.1080/23746149.2024.2324910
  • [4] B. Praveen, S. Suresh, V. Pethurajan, “Heat transfer performance of graphene nano-platelets laden microencapsulated PCM with polymer shell for thermal energy storage based heat sink”, Appl. Therm. Eng., vol. 156, pp. 237-249, 2019. https://doi.org/10.1016/j.applthermaleng.2019.04.072
  • [5] R. Li, Y. Zhou, X. Duan, “Nanoparticle enhanced paraffin and tailing ceramic composite phase change material for thermal energy storage”, Sustainable Energy Fuels, vol. 4, pp. 4547-4557, 2020
  • [6] Y. Huang, A. Stonehouse, Ch. Abeykoon, “Encapsulation methods for phase change materials – A critical review”, Int. J. Heat Mass Transf., no. 200, pp. 123458, 2023. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123458
  • [7] A. Palacios, M.E. Navarro-Rivero, B. Zou, Z. Jiang, M.T. Harrison, Y. Ding, “A perspective on Phase Change Material encapsulation: Guidance for encapsulation design methodology from low to high-temperature thermal energy storage applications”, J. Energy Storage, no. 72, pp. 108597, 2023. https://doi.org/10.1016/j.est.2023.108597
  • [8] Y. Chang, X. Yao, Y. Chen, L. Huang, D. Zou, “Review on ceramic-based composite phase change materials: Preparation, characterization and application”, Compos. B Eng., Vol. 254, pp. 110584, 2023. https://doi.org/10.1016/j.compositesb.2023.110584
  • [9] Q. Ma, D. Zou, Y. Wang, K. Lei, “Preparation and properties of novel ceramic composites based on microencapsulated phase change materials (MEPCMs) with high thermal stability”, Ceram. Int., vol. 47, no. 17, pp. 24240-24251, 2021. https://doi.org/10.1016/j.ceramint.2021.05.135
  • [10] D. Galusek, D. Galusková, “Alumina matrix composites with non-oxide nanoparticle addition and enhanced functionalities”, Nanomaterials, vol. 5, no.1, pp.115-143, 2015. https://doi.org/10.3390/nano5010115
  • [11] J. Paterson, D. Singhal, D. Tainoff, J. Richard, O. Bourgeois, “Thermal conductivity and thermal boundary resistance of amorphous Al2O3 thin films on germanium and sapphire”, J. Appl. Phys., vol. 127, no.24, pp. 245105, 2020. https://doi.org/10.1063/5.0004576
  • [12] S.S. Chen, Q.Z. Wu, C. Mishra, J.Y. Kang, H.J. Zhang, K.J. Cho, W.W. Cai, A.A. Balandin, R.S. Ruoff, “Thermal conductivity of isotopically modified graphene”, Nat. Mater., vol. 11, pp. 203-207, 2012. https://doi.org/10.1038/nmat3207
  • [13] E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, “Thermal conductance of an individual single-wall carbon nanotube above room temperature”, Nano Lett., vol. 6, no.1, pp. 96-100, 2006. https://doi.org/10.1021/nl052145f
  • [14] D. Xia, H. Li, P. Huang, “Understanding the Joule-heating behaviors of electrically-heatable carbon-nanotube aerogels”, Nanoscale Adv., vol. 3, pp. 647-652, 2021. https://doi.org/10.1039/D0NA01002B
  • [15] I. Afaynou, H. Faraji, K. Choukairy, A. Arshad, M. Arici, “Heat transfer enhancement of phase-change materials (PCMs) based thermal management systems for electronic components: A review of recent advances”, Int. Commun. Heat Mass Transf., vol. 143, pp. 106690, 2023. https://doi.org/10.1016/j.icheatmasstransfer.2023.106690
  • [16] J. Yuan, K. Yang, B. Huang, J. Li, C. Qiu, Y. Jiang, “Transient thermal management of laser systems using Plate-Fin phase change heat Exchangers: Experimental and computational study”, Appl. Therm. Eng., vol. 255, pp. 123994, 2024. https://doi.org/10.1016/j.applthermaleng.2024.123994
  • [17] D.X. Zhang, C.Y. Zhu, L. Gong, B. Ding, M.H. Xu, “Investigation on thermal performance of a novel passive phase change material-based fin heat exchanger”, J. Therm. Sci. Eng. Appl., vol. 15, no. 2, pp. 021007, 2023. https://doi.org/10.1115/1.4056009
  • [18] V.D. Cao, S. Pilehvar, C. Salas-Bringas, A.M. Szczotok, J.F. Rodriguez, M. Carmona, N. Al-Manasir, A.L. Kjøniksen, “Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications”, Energy Convers. Manag., vol. 133, pp. 56-66, 2017. https://doi.org/10.1016/j.enconman.2016.11.061
  • [19] A. Sivanathan, Q. Dou, Y. Wang, Y. Li, J. Corker, Y. Zhou, M. Fan, “Phase change materials for building construction: An overview of nano/micro-encapsulation”, Nanotechnol. Rev., vol. 9, no.1, pp. 896-921, 2020. https://doi.org/10.1515/ntrev-2020-0067
  • [20] V.J. Reddy, M.F. Ghazali, S. Kumarasamy, “Innovations in phase change materials for diverse industrial applications: A comprehensive review”, Results in Chemistry, vol. 8, pp. 101552, 2024. https://doi.org/10.1016/j.rechem.2024.101552
  • [21] Z. Xiangfa, X. Hanning, F.Jian, Z. Changrui, J. Yonggang, “Preparation and thermal properties of paraffin/porous silica ceramic composite”, Compos. Sci. Technol., vol. 69, pp. 1246-1249, 2009. https://doi.org/10.1016/j.compscitech.2009.02.030
  • [22] K. Yu, Y. Wang, Y. Li, J. Baleta, J. Wang, B. Sundén, “Effect of phase change materials on heat dissipation of a multiple heat source system”, Open Phys., vol. 17, pp. 797-807, 2019. https://doi.org/10.1515/phys-2019-0083
  • [23] S. Jaiswal, S. Sonare, P. Mahanwar, “Review on phase change material and its composites with polyolefins”, Int. J. Novel Res. Devel., vol. 8, no. 2, pp. 228-244, 2023. ISSN: 2456-4184
  • [24] S. Chai, K. Sun, D. Zhao, Y. Kou, Q. Shi, “Form-Stable Erythritol/HDPE Composite Phase Change Material with Flexibility, Tailorability, and High Transition Enthalpy”, ACS Appl. Polym. Mater., vol. 2, no. 11, pp. 4464–4471, 2020. https://doi.org/10.1021/acsapm.0c00584
  • [25] B. Synkiewicz-Musialska, P. Zachariasz, E. Szostak, “Synthesis and thermal stabilization properties of phase change materials and their application in the composite with LiCuPO4”, Proceedings of the 4th International Conference on Micro-electronic Devices and Technologies (MicDAT '2022), IFSA Publishing, S. L., Barcelona, Spain, ISBN: 978-84-09-43856-3
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
2. The National Science Centre Poland financed the work under projects TECHMATSTRATEG-III/0026/2019-00 (MIRPIC) and CHISTERA IV Programme (EU Horizon 2020 Research and Innovation Programme, under Grant Agreement no. 857925, UMO-2021/03/Y/ST7/00016). The work was also financed by the statutory funds at Łukasiewicz–Institute of Micro-electronics and Photonics in 2023 (project No. 1.06.071).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c74401ec-79ae-488f-a938-eb5937557651
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.