PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Natural Processes in Mitigation of CO2 and CH4 Emission

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Procesy naturalne redukujące emisję CO2 i CH4
Języki publikacji
EN
Abstrakty
PL
W pracy scharakteryzowano emisję CO2 i CH4 oraz ich wpływ na efekt cieplarniany. Omówiono przepływy pomiędzy ekosystemami Ziemi. Szczególna uwagę zwrócono na naturalne metody usuwania CO2 przez uprawy rolnicze na przykładzie powiatu bialskiego. Omówienie redukcji ograniczono do redukcji jego emisji z wysypisk.
Słowa kluczowe
Rocznik
Strony
1039--1048
Opis fizyczny
Bibliogr. 47 poz., rys.
Twórcy
  • Lublin University of Technology
autor
  • Lublin University of Technology
autor
  • Lublin University of Technology
Bibliografia
  • 1. Acharya, B.S., Rasmussen, J., Eriksen, J. (2012). Grassland carbon sequestrationand emissions following cultivation in a mixed crop rotation. Agriculture, Ecosystems & Environment, 153, 33-39.
  • 2. Ahmed, S.I., Johari, A., Hashim, H., Mat, R, Lim, J.S., Ngadi, N., Ali, A. (2015). Optimal landfill gas utilization for renewable energy production.
  • 3. Environmental Progress & Sustainable Energy, 34(1), 289-296. Beer, C. et al. (2010). Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science, 329(5993), 834-838.
  • 4. Bogner, J. et al. (2008). Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation). Waste Manag. Res., 26, 11-32.
  • 5. Boogner, J., Matthews, E. (2003). Global methane emissions from landfills: New methodology and annual estimates. Global Biogeochem. Cycles., 17(2), 1065-1083.
  • 6. Cao, Y., Cel, W. (2015). Sustainable Mitigation of Methane Emission by NaturalProcesses. Problemy Ekorozwoju/Problems of Sustainable Development, 10(1), 117-121.
  • 7. Carvajal, M. (2010). Investigation into CO2 absorption of the most representative agricultural crops of the region of Murcia. CSIC Report,http://www.lessco2.es/pdfs/noticias/ponencia_cisc_ingles.pdf
  • 8. Czepiel, P.M., Mosher, B., Crill, P.M., Harriss, R.C. (1996). Quantifying the effect of oxidation on landfill methane emissions. Journal of geophysical research: Atmospheres, 101 (D11), 16721-16729.
  • 9. Dlugokencky, E.J., Nisbet, E.G., Fisher, R., Lowry, D. (2011). Global atmospheric methane: budget, changes and dangers. Phil. Trans. R. Soc. A, 363, 2058-2072.
  • 10. European Commission, Joint Research Centre/Netherlands Non-CO2 Environmental Assessment Agency. Emission Database for Global Atmospheric Research (EDGAR) (VERSION 4.2) http://edgar.jrc.ec.europa.eu
  • 11. EPA (2011). Environmental Protection Agency. Global Athropogenic Non-CO2 Greenhouse Gas Emissions: 1990-2030.
  • 12. EPA (2014). Climate Change Indications in the United States: Global Greenhouse Gas Emissions. www.epa.gov/climatechange/indicators.
  • 13. EPA (2014). Global Methane Emissions and Mitigation Opportunities. EPA’s Global Anthropogenic Emissions of Non-CO2 Greenhouse Gases: 1990–2020 (EPA Report 430-R-06-003), www.epa.gov/climatechange/economics/international.html.
  • 14. ESRL (2016). Trend in Atmospheric Methane. www.esrl.noaa.gov.
  • 15. Gaj, K. (2012). Pochłanianie CO2 przez polskie ekosystemy leśne. Leśne Prace Badawcze/Forest Research Papers, 73(1), 17-21.
  • 16. Ghosh, A. et al. (2015). Variations in global methane sources and sinks during 1910–2010. Atmos. Chem. Phys., 15, 2595-2612.
  • 17. Houghton, R.A. et al. (2012). Carbon emissions from land use and land-cover change. Biogeosciences, 9, 5125-5142.
  • 18. IPCC (2013). Climate Change 2013: The Physical Science Basis, Cambridge University Press, Cambridge.
  • 19. IPCC (2014). Intergovernmental Panel on Climate Change. Climate change 2014: Mitigation of climate change. Working Group III contribution to the IPPCC Fifth Assessment Report. Cambridge, United Kingdom: Cambridge University Press. www.ipcc.ch/report/ar5/wg3.
  • 20. Kirschke et al. (2013). Three decades of global methane sources and sinks. Nature Geosci., 6, 813-823, doi:10.1038/ngeo1955.
  • 21. Le Quare et al. (2013). The Global Carbon Budget 1995-2011. Earth Syst. Science Data, 5, 165-168.
  • 22. Matthews, E., Themelis, N. J. (2007). Potential for reducing global methane emissions from landfills, 2003-2030. Eleventh International Waste Management and Landfill Symposium, Sardynia 2007.
  • 23. Montusiewicz, A., Lebiocka, M., Pawlowska, M. (2008). Characterization of the biomethanization process in selected waste mixtures. Archives of Environmental Protection, 34(3), 49-61.
  • 24. Mota, C. et al., (2010). Absorption of CO2 by the Most Representative in the Region of Murcia Crops. Report SCIC.
  • 25. Liu, H. (2015). Biofuel's Sustainable Development under the Trilemma of Energy, Environment and Economy. Problemy Ekorozwoju/Problems of Sustainable Development, 10(1), 55-59.
  • 26. Pan, Y. et al. (2011). A Large and Persistent Carbon Sink in the World's Forests. Science, 333(60450), 988-993.
  • 27. Patyńska, R. (2014). Methodology of Estimation of Methane Emissions from Coal Mines in Poland. Studia Geotechnica et Mechanica, 36(1), 89-101.
  • 28. Pawlowska, M. (2008). Reduction of methane emission from landfills by its microbial oxidation in filter bed. Management of Pollutant Emission from Landfills and Sludge Book Series: Proceedings and Monographs in Engineering Water and Earth Sciences, 3-20.
  • 29. Pawlowska, M. (2014). Mitigation of landfil gas Emission. Publisher: CRC Press- Taylor & Francis Group, 6000 Broken Sound Parkway NW, Ste 300, Boca Raton, FL 33487-2742 USA.
  • 30. Pawlowska, M., Siepak, J. (2006). Enhancement of Methanogenesis at a Municipal Landfill Site by Addition of Sewage. Environmental Engineering Sciences, 3(4), 673-679.
  • 31. Pawlowska, M., Stepniewski, W. (2005). Biochemical reduction of methane emission from landfills. Conference: Conference of Pathway of Pollutants and Mitigation Strategies for Their Impact on the Ecosystems Location: Kazimierz Dolny, POLAND Date: SEP 04-07, 2005, Environmental Engineering Science, 23(4), 666-672.
  • 32. Pawlowski, A. (2009). Theorethical Aspects of Sustainable Development Concept. Rocznik Ochrona Środowiska, 11(2), 985-994.
  • 33. Pawlowski, A. (2013). Sustainable Development and Globalization. Problemy Ekorozwoju/Problems of Sustainable Development, 8(2), 5-16.
  • 34. Peters, G.P. et al. (2013). The challenge to keep global warming below 2°C. Nature Climate Change, 3, 4-6. Philips O.L., Lewis S.L. (2014). Evaluating the Tropical Forest Carbon Sink. Global Change Biology, 20, 2039-2041.
  • 35. Prather, M.J., Christopher D.H., Hsu J. (2012). Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmosphericchemistry. Geophysical Research Letters, 2012.
  • 36. Sauerbeck, R.D. (2001). CO2 emissions and C sequestration by agriculture –perspectives and limitations. Nutrient Cycling in Agroecosystems, 60(1), 253-266.
  • 37. Savić, D, Jeremić, V., Petrović, N. (2016). Rebuilding the Pillars of Sustainable Society Index: a Multivariate Post Hoc I-distance Approach. ProblemyEkorozwoju/Problems of Sustainable Development, 12(1), 125-134.
  • 38. Shindell, D. et al. (2012). Simultaneously mitigating near-term climate change and improving human health and food security. Science, 335, 183-189.
  • 39. Soussana, J.F. et al. (2004). Carbon Cycling and Sequestration Opportunities in Temperate Grasslands. Soil Use and Management, 20, 219-230.
  • 40. Soussana, J.F. et al. (2007). Full Accounting of the Greenhouse Gas (CO2, NO2, CH4) Budget of Nine European Grassland Sites. Agriculture, Ecosystems, and Environment, 121, 121-134.
  • 41. Soussana, J.F. et al. (2009). Mitigating the Greenhouse Gas Balance of Ruminant Production Systems Through Carbon Sequestration in Grasslands. Animal, 4(3), 334-350.
  • 42. Staszewska, E., Pawlowska, M. (2011). Characteristics of emissions from municipal waste landfills. Environment Protection Engineering, 37(4), 119-130.
  • 43. Stepniewski, W., M. Pawlowska, (1996). A possibility to reduce methane emission from landfills by its oxidation in the soil cover.Chemistry for the Protection of the Environment 2, 51, 76-92.
  • 44. Themelis, N.J., Kim, Y.H., Bredy, M.H.(2002). Energy recovery from New York City municipal solid wastes. Waste Manag. & Res., 20(3), 223-233.
  • 45. Trumper, K. et al., (2009). The Natural Fix? The Role of Ecosystems in Climate Mitigation. A UNEP rapid response assessment. United Naions Environment Programme. UNEP-WCMC. Cambridge, UK.
  • 46. Udo, V., Pawlowski, A. (2010). Human Progress Towards Equitable Sustainable Development: A Philosophical Exploration. Problemy Ekorozwoju/Problems of Sustainable Development, 5(1), 23-44.
  • 47. U.S. EPA (2014). Global Anthropogenic Emissions of CO2, Greenhouse Gasses. EPA Report 430-R-06-003.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c743ac59-248c-494c-ac07-a1469d87a9f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.