PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Two-Dimensional Chebyshev Wavelet Method for Camassa-Holm Equation with Riesz Fractional Derivative Describing Propagation of Shallow Water Waves

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, the authors present a new wavelet based method viz. Chebyshev wavelet method to compute the numerical solution of Riesz time-fractional Camassa-Holm equation. The approximate solutions of Riesz time-fractional Camassa-Holm equation thus obtained by two-dimensional Chebyshev wavelet method are compared with those obtained by analytical methods such as homotopy analysis method (HAM) and variational iteration method (VIM). The present scheme is quite simple, effective and appropriate for obtaining the numerical solution of the Riesz time-fractional Camassa-Holm equation.
Rocznik
Strony
77--89
Opis fizyczny
Bibliogr. 15 poz., tab., wykr.
Twórcy
autor
  • National Institute of Technology, Department of Mathematics, Rourkela-769008, Odisha, India
autor
  • National Institute of Technology, Department of Mathematics, Rourkela-769008, Odisha, India
Bibliografia
  • [1] Zhang Y. Time-fractional Camassa-Holm equation: Formulation and solution using Variational methods. Journal of Computational and Nonlinear Dynamics. 2013; 8: 0410201-0410207. doi: 10.1115/1.4024970.
  • [2] Guo F, Peng W. Blowup solutions for the generalized two-component Camassa-Holm system on the circle. Nonlinear Analysis. 2014; 105: 120-133. doi: 10.1016/j.na.2014.03.021.
  • [3] Rehman T, Gambino G, Roy Choudhury S. Smooth and non-smooth travelling wave solutions of some generalized Camassa-Holm equations. Commun Nonlinear Sci Numer Simulat. 2014; 19 (6): 1746-1769. doi: 10.1016/j.cnsns.2013.10.029.
  • [4] Camassa R, Holm D, Hyman J. A new integrable shallow water equation. Advances in Applied Mechanics. 1994; 31: 1-33. doi: 10.1016/S0065-2156(08)70254-0.
  • [5] Johnson RS. Camassa-Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech. 2002; 455: 63-82. Available from: http://dx.doi.org/10.1017/S0022112001007224.
  • [6] Fokas A, Fuchssteiner B. Symplectic structures, their Backlund transformation and hereditary symmetries. Phys. D. 1981; 4 (l): 47-66. doi: 10.1016/0167-2789(81)90004-X.
  • [7] Lenells J. Conservation laws of the Camassa-Holm equation. J. Phys. A. 2005; 38 (4): 869-880.
  • [8] Camassa R, Holm D. An integrable shallow water equation with peaked solutions. Phys. Rev. Lett. 1993; 71: 1661-1664. Available from: http://dx.doi.org/10.1103/PhysRevLett.71.1661.
  • [9] Zhang Y, Yang X. An efficient analytical method for solving local fractional nonlinear PDEs arising in mathematical physics. Applied Mathematical Modelling, 2016; 40 (3): 1793-1799. doi: 10.1016/j.apm.2015.08.017.
  • [10] Ahmad J, Mohyud-Din ST, Srivastava HM, Yang X. Analytic solutions of the Helmholtz and Laplace equations by using local fractional derivative operators. Waves Wavelets Fractals Adv. Anal. 2015; 1 (1): 12-26. doi: 10.1515/wwfaa-2015-0003.
  • [11] Samko SG, Kilbas AA, Marichev OI. Fractional Integrals and derivatives: Theory and Applications. Taylor and Francis; 1993.
  • [12] Herrmann R. Fractional calculus: An introduction for physicists. World Scientific; 2011. ISBN-13: 978-9814340243, 10: 9814340243.
  • [13] Wang Y, Fan Q. The second kind Chebyshev wavelet method for solving fractional differential equations. Applied Mathematics and Computation. 2012; 218 (17): 8592-8601. doi: 10.1016/j.amc.2012.02.022.
  • [14] Gupta AK, Saha Ray S. Numerical treatment for the solution of Fractional Fifth Order Sawada-Kotera Equation using Second Kind Chebyshev Wavelet Method. Applied Mathematical Modelling. 2015; 39 (17): 5121-5130. doi: 10.1016/j.apm.2015.04.003.
  • [15] Zhu L, Fan Q. Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet. Commun Nonlinear Sci Numer Simulat. 2012; 17 (6): 2333-2341. doi: 10.1016/j.cnsns.2011.10.014.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c73b6305-bbc6-4d27-8e5f-aa6549d06626
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.