PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Surface Laser Treatment on Mechanical Properties and Residual Stresses of Titanium and its Alloys

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Surface modification of the titanium and its alloys used in implantology with a long-pulse laser can change the surface topography, but it also leads to changes in the stress sign and magnitude in the resulting subsurface layer. The presented research was aimed at evaluating the state of stress after laser remelting with the Nd:YAG laser of pre-etched titanium alloys Ti6Al4V and Ti13Nb13Zr and pure titanium. The obtained surface layers were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), optical profilography, and nanoindentation studies. Based on the results obtained after the nanoindentation tests, the character of the stresses generated in the melted layers was calculated and determined. Laser processing resulted in surface layer thicknesses between 191-320 µm and surface roughness Ra between 2.89-5.40 µm. Laser processing caused increasing hardness, and its highest value was observed for the titanium alloy Ti13Nb13Zr - 5.18 GPa. The tensile stresses appeared following laser treatment and increased with elevating laser power up to the highest value for titanium.
Twórcy
  • Department of Biomaterials Technology, Institute of Manufacturing and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, 80-233 Gdansk, Poland
  • Department of Biomaterials Technology, Institute of Manufacturing and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, 80-233 Gdansk, Poland
  • Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2/Budynek nr 136, 00-908, Warszawa, Poland
  • CNRS, Institute of Mechanics and Engineering, University of Bordeaux, 351 Cours de la Libération CS10004, 33400 Talence, France
Bibliografia
  • 1. Wu Z., Kou H., Chen N., Xi Z., J. Fan, Tang B., Li J. Recent developments in cold dwell fatigue of tianium alloys for aero-engine applications: a review, Journal of Materials Research and Technology. 20 (2022) 469–484.
  • 2. Zhao Q., Sun Q., Xin S., Chen Y.,Wu C., Wang H., Xu J., Wan M., Zeng W., Zhao Y. High-strength titaium alloys for aerospace engineering applications: A review on melting-forging process, Materials Sci- ence and Engineering: A. 845 (2022) 143260.
  • 3. Nichul U., Hiwarkar V. Carbon dot complimentary green corrosion inhibitor for crystallographically textured Beta C titanium alloy for marine application: A state of art, Journal of Alloys and Compounds. 962 (2023) 171116.
  • 4. Saurabh A., Meghana C.M., Singh P.K., Verma P.C. Titanium-based materials: synthesis, properties, and applications, Materials Today: Proceedings. 56 (2022) 412–419.
  • 5. Pesode P., Barve S., Wankhede S. V., Jadhav D.R., Pawar S.K. Titanium alloy selection for biomedial application using weighted sum model methodology, Materials Today: Proceedings. 72 (2023) 724–728.
  • 6. Ghosh M., Surekha S., Anisha M., Thirugnanam A. Ultra-fine grained commercial pure titanium for load-bearing applications, Materials Today: Proceedings. 80 (2023) 1534–1537.
  • 7. J. Gummadi, S. Alanka, A review on titanium and titanium alloys with other metals for biomedical applications prepared by powder metallurgy techniques, Materials Today: Proceedings. (2023). in press
  • 8. Han X., Ma J., Tian A., Wang Y., Li Y., Dong B., Tong X., Ma X. Surface modification techniques of titanium and titanium alloys for biomedical orthopaedics applications: A review, Colloids and Suraces B: Biointerfaces. 227 (2023) 113339.
  • 9. Ronoh K., Mwema F., Dabees S., Sobola D. Advances in sustainable grinding of different types of the titanium biomaterials for medical applications: A review, Biomedical Engineering Advances. 4 (2022) 100047.
  • 10. Makurat-Kasprolewicz B., Ossowska A. Recent advances in electrochemically surface treated titanium and its alloys for biomedical applications: A review of anodic and plasma electrolytic oxidation methods, Materials Today Communications. 34 (2023) 105425.
  • 11. Rogala-Wielgus D., Majkowska-Marzec B., Zieliński A., Jankiewicz B.J. Mechanical behawior of bilayer and dispersion coatings composed of several nanostructures on ti substrate, Applied Scinces (Switzerland). 11 (2021).
  • 12. Sunil B.R., Kranthi Kiran A.S., Ramakrishna S. Surface functionalized titanium with enhanced bioactivity and antimicrobial properties through Surface engineering strategies for bone implant applications, Current Opinion in Biomedical Engineering. 23 (2022) 100398.
  • 13. Zhou J.Z., Huang S., Zuo L.D., Meng X.K., Sheng J., Tian Q., Han Y.H., Zhu W.L. Effects of laser peening on residual stresses and fatigue crack growth properties of Ti-6Al-4V titanium alloy, Optics and Lasers in Engineering. 52 (2014) 189–194.
  • 14. Dai F.Z., Geng J., Tan W.S., Ren X.D., Lu J.Z., Huang S. Friction and wear on laser textured Ti6Al4V surface subjected to laser shock peening with contacting foil, Optics and Laser
  • 15. Petronić S., Čolić K., Đorđević B., Milovanović D., Burzić M., Vučetić F. Effect of laser shock peening with and without protective coating on the microstructure and mechanical properties of Ti-alloy, Optics and Lasers in Engineering. 129 (2020).
  • 16. Lin Y., Yao J., Lei Y., Fu H., Wang L. Microstructure and properties of TiB2-TiB reinforced titanium matrix composite coating by laser cladding, Optics and Lasers in Engineering. 86 (2016) 216–227.
  • 17. Akman E., Cerkezoglu E. Compositional and microscratch analyses of laser induced colored Surface of titanium, Optics and Lasers in Engineering. 84 (2016) 37–43.
  • 18. Zhu G., Xu Z., Jin Y., Chen X., Yang L., Xu J., Shan D., Chen Y., Guo B. Mechanism and application of laser cleaning: A review, Optics and Lasers in Engineering. 157 (2022) 107130.
  • 19. Wang X., Zhang D., Gu C., Shen Z., Ma Y., Gu Y., Qiu T., Liu H. Micro scale laser shock forming of pure copper and titanium sheet with forming/blanking compound die, Optics and Lasers in Engineerng. 67 (2015) 83–93.
  • 20. Hua YU A., XU W., LU X., TAMADDON M., Wen LIU B., Wei TIAN S., ZHANG C., MUGHAL M.A., Zhen ZHANG J., Zong LIU C. Development and characterizations of graded porous titanium scaffolds via selective laser melting for orthopedics applications, Transactions of Nonferrous Metals Society of China (English Edition). 33 (2023) 1755–1767.
  • 21. Convert L., Bourillot E., François M., Pocholle N., Baras F., Politano O., Costil S. Laser textured titanium surface characterization, Applied Surface Science. 586 (2022) 152807.
  • 22. Simões I.G., Dos Reis A.C., Costa Valente M.L. Analysis of the influence of surface treatment by high-power laser irradiation on the surface properties of titanium dental implants: A systematic review, Journal of Prosthetic Dentistry. (2021) 1–8.
  • 23. Souza J.C.M., Sordi M.B., Kanazawa M., Ravindran S., Henriques B., Silva F.S., Aparicio C., Cooper L.F. Nano-scale modification of titanium implant surfaces to enhance osseointegration, Acta Biomaterialia. 94 (2019) 112–131.
  • 24. He W., Yao P., Chu D., Sun H., Lai Q., Wang Q., Wang P., Qu S., Huang C. Controllable hydrophilic titanium surface with micro-protrusion or microgroove processed by femtosecond laser direct writing, Optics and Laser Technology. 152 (2022) 108082.
  • 25. Wedemeyer C., Jablonski H., Mumdzic-Zverotic A., Fietzek H., Mertens T., Hilken G., Krüger C., Wissmann A., Heep H., Schlepper R., Kauther M.D. Laser-induced nanostructures on titanium surfaces ensure osseointegration of implants in rabbit femora, Materialia. 6 (2019)
  • 26. Yao H., Zou X., Zheng S., Hu Y., Zhang S., Liang C., Zhou H., Wang D., Wang H., Yang L., Li Q. Femtosecond laser-induced nanoporous layer for enhanced osteogenesis of titanium implants, Materials Science and Engineering C. 127 (2021) 112247.
  • 27. Qiang Dou H., Liu H., Xu S., Chen Y., Miao X., Lü H., Jiang X. Influence of laser fluences and scan speeds on the morphologies and wetting properties of titanium alloy, Optik. 224 (2020).
  • 28. Wang Y., Zhang M., Li V, Hu J. Study on the Surface properties and biocompatibility of nanosecond laser patterned titanium alloy, Optics and Laser Technology. 139 (2021) 106987.
  • 29. Pandey L.M. Design of biocompatible and self-antibacterial titanium surfaces for biomedical applications, Current Opinion in Biomedical Engineering. 25 (2022) 100423.
  • 30. Kaur M., Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications, Materials Science and Engineering C. 102 (2019) 844–862.
  • 31. Abdal-hay A., Staples R., Alhazaa A., Fournier B., Al-Gawati M., Lee R.S., Ivanovski S. Fabrication of micropores on titanium implants using femtosecond laser technology: Perpendicular attachment of connective tissues as a pilot study, Optics and Laser Technology. 148 (2022) 107624.
  • 32. Ushakov I., Simonov Y. Formation of surface properties of VT18u titanium alloy by laser pulse treatment, Materials Today: Proceedings. 19 (2019) 2051–2055.
  • 33. Watanabe I., McBride M., Newton P., Kurtz K.S. Laser surface treatment to improve mechanical properties of cast titanium, Dental Materials. 25 (2009) 629–633.
  • 34. Liu Q., Liu Y., Li X., Dong G. Pulse laser-induced cell-like texture on surface of titanium alloy for tribological properties improvement, Wear. 477 (2021) 203784.
  • 35. Kümmel D., Linsler D., Schneider R., Schneider J. Surface engineering of a titanium alloy for tribological applications by nanosecond-pulsed laser, Tribology International. 150 (2020)
  • 36. Lu J., Huang T., Liu Z., Zhang X., Xiao R. Longterm wettability of titanium surfaces by combined femtosecond laser micro/nano structuring and chemical treatments, Applied Surface Science. 459 (2018) 257–262.
  • 37. Yu Z., Zhang J., Hu J. Study on surface properties of nanosecond laser textured plasma nitrided titanium alloy, Materials Today Communications. 31 (2022) 103746.
  • 38. Katahira K., Ezura A., Ohkawa K., Komotori J., Ohmori H. Generation of bio-compatible titanium alloy surfaces by laser-induced wet treatment, CIRP Annals - Manufacturing Technology. 65 (2016) 237–240.
  • 39. Calazans Neto J.V., Kreve S., Da C. Valente M.L., Reis A.C. Protein absorption on titanium surfaces treated with a high-power laser: A systematic review, Journal of Prosthetic Dentistry. (2022) 1–7
  • 40. Khoo L.K., Sakdajeyont W., Khanijou M., Seriwatanachai D., Kiattavorncharoen S., Pairuchvej V., Wongsirichat N. Titanium fixture implants treated by laser in dentistry: Review article, Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology. 31 (2019) 381–385.
  • 41. Papa S., Abou Khalil A., Hamzeh-Cognasse H., Thomas M., Maalouf M., Di Maio Y., Sedao X., Guignandon A., Dumas V. Dual-functionalized titanium by ultrafast laser texturing to enhance human gingival fibroblasts adhesion and minimize Porphyromonas gingivalis colonization, Applied Surface Science. 606 (2022) 154784.
  • 42. Shirazi H.A., Chan C.W., Lee S. Elastic-plastic properties of titanium and its alloys modified by fibre laser surface nitriding for orthopaedic implant applications, Journal of the Mechanical Behavior of Biomedical Materials. 124 (2021) 104802.
  • 43. Jażdżewska M., Bartmański M., Zieliński M., Kwidzińska D.B. Effect of Laser Treatment on Intrinsic Mechanical Stresses in Titanium and Some of Its Alloys, Applied Sciences (Switzerland). 13 (2023).
  • 44. Jażdżewska M., Kwidzińska D.B., Seyda W.,Fydrych D., Zieliński A. Mechanical Properties and Residual Stress Measurements of Grade IV Titanium and Ti-6Al-4V and Ti-13Nb-13Zr Titanium Alloys after Laser Treatment, Materials. 14 (2021) 6316.
  • 45. Lee Y.H., Kwon D. Residual stresses in DLC/Si and Au/Si systems: Application of a stress-relaxation model to the nanoindentation technique, Journal of Materials Research. 17 (2002) 901–906.
  • 46. Majumdar P., Singh S.B., Chakraborty M. Wear response of heat-treated Ti-13Zr-13Nb alloy in dry condition and simulated body fluid, Wear. 264 (2008) 1015–1025.
  • 47. Simões I.G., Dos Reis A.C., Costa Valente M.L. Analysis of the influence of surface treatment by high-power laser irradiation on the surface properties of titanium dental implants: A systematic review, Journal of Prosthetic Dentistry. 129 (2023) 863–870.
  • 48. Kosturkiewicz Z., Metody krystalografii, Wydawnictwo Poznań, 2004.
  • 49. Yang L., Ding X., Zhou Y. Femtosecond laser induced periodic nanostructures towards enhanced anti-corrosive property of titanium, Surface and Coatings Technology. 463 (2023) 129533.
  • 50. Xue A., Lin X., Wang L., Lu X., Ding H., Huang W.Heat-affected coarsening of β grain in titanium alloy during laser directed energy deposition, Scripta Materialia. 205 (2021) 114180.
  • 51. Li Z., Li Y., Liu S., Wu L., Qin W., Wu X. Enhancement of oxidation resistance of Cr/CrN composite coating on Zr-4 surface by high lattice-matched interfacial Engineering, Journal of Nuclear Materials. 574 (2023).
  • 52. Zhang H., Cai Z., Chi J., Sun R., Che Z., Zhang H., Guo W. Fatigue crack growth in residual stress fields of laser shock peened Ti6Al4V titanium alloy, Journal of Alloys and Compounds. 887 (2021) 161427.
  • 53. Yang J., Tang H., Wei P., Gao H., Wang J., Huo H., Zhu Y. Microstructure and Mechanical Properties of an Ultrahigh-strength Titanium alloy Ti-4.5Al- 5Mo-5V-6Cr-1Nb Prepared Using Laser Directed Energy Deposition and Forging: A Comparative Study, Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers. 2 (2023) 100064.
  • 54. Chauhan A.S., Jha J.S., Telrandhe S., S. V, GokhaleA.A., Mishra S.K. Laser surface treatment of α-β titanium alloy to develop a β -rich phase with very high hardness, Journal of Materials Processing Technology. 288 (2021) 116873.
  • 55. Costa F.H., Sallica-Leva E., Mello M.G., Amigó V,. Caram R, Fogagnolo J.B. Stiffness and hard- ness gradients obtained by laser surface treatment of aged β-Ti alloys: The role of ω phase, Surface and Coatings Technology. 467 (2023).
  • 56. Hua Y., Guo B., Jiang L., Chen R., Zhang T., Chen M. Strengthened and hydrophobic surface of titanium alloy by femtosecond laser shock peening without a protective or sacrificial layer, Optics and Laser Technology. 167 (2023) 109787.
  • 57. Lisiecki, A., & Kurc-Lisiecka, A. (2023). Laser Cladding of NiCrBSi/WC+ W2C CompositeCoatings. Coatings, 13(3), 576.
  • 58. Kadyroldina, A., Alontseva, D., Voinarovych, S., Łatka, L., Kyslytsia, O., Azamatov, B., ... & Burburska, S. (2022). Microplasma spraying of hydroxyapatite coatings on additive manufacturing titanium implants with trabecular structures. Materials Science-Poland, 40(4), 28-42.
  • 59. Tuz, L., Sokołowski, Ł., & Stano, S. (2023). Effect of Post-Weld Heat Treatment on Microstructure and Hardness of Laser Beam Welded 17-4 PH Stainless Steel. Materials, 16(4), 1334.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c736cd41-b152-4ec0-99ac-bb996509970b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.