PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ruled real hypersurfaces in the complex hyperbolic quadric

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we introduce a new family of real hypersurfaces in the complex hyperbolic quadric [formula] , namely, the ruled real hypersurfaces foliated by complex hypersurfaces. Berndt described an example of such a real hypersurface in [formula] as a homogeneous real hypersurface generated by a [symbol] -principal horocycle in a real form [formula]. So, in this article, we compute a detailed expression of the shape operator for ruled real hypersurfaces in [formula] and investigate their characterizations in terms of the shape operator and the integrable distribution [formula]. Then, by using these observations, we give two kinds of classifications of real hypersurfaces in [formula] satisfying η -parallelism under either η -commutativity of the shape operator or integrability of the distribution C. Moreover, we prove that the unit normal vector field of a real hypersurface with η -parallel shape operator in [formula] is [symbol] -principal. On the other hand, it is known that all contact real hypersurfaces in [formula] have a [symbol] -principal normal vector field. Motivated by these results, we give a characterization of contact real hypersurfaces in [formula] in terms of η -parallel shape operator.
Wydawca
Rocznik
Strony
art. no. 20230258
Opis fizyczny
Bibliogr. 28 poz., tab.
Twórcy
autor
  • Department of Mathematics Education, Chosun University, Gwangju 61452, Republic of Korea
  • Department of Mathematics and Research Institute of Real and Complex Manifolds, Kyungpook National University, Daegu 41566, Republic of Korea
autor
  • Department of Applied Mathematics, Pukyong National University, Busan 48547, Republic of Korea
Bibliografia
  • [1] P. B. Eberlein, Geometry of Nonpositively Curved Manifolds, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1996.
  • [2] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II, Reprint of the 1969 original, Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1996.
  • [3] B. Smyth, Differential geometry of complex hypersurfaces, Ann. Math. 85 (1967), 246–266, DOI: https://doi.org/10.2307/1970441.
  • [4] B. Smyth, Homogeneous complex hypersurfaces, J. Math. Soc. Japan 20 (1968), 643–647, DOI: https://doi.org/10.2969/jmsj/02040643.
  • [5] K. Nomizu, On the rank and curvature of non-singular complex hypersurfaces in a complex projective space, J. Math. Soc. Japan 21 (1969), no. 2, 266–269, DOI: https://doi.org/10.2969/jmsj/02120266.
  • [6] S. Klein, Totally geodesic submanifolds of the complex quadric, Differential Geom. Appl. 26 (2008), 79–96, DOI: https://doi.org/10.1016/j.difgeo.2007.11.004.
  • [7] J. D. Pérez, Some real hypersurfaces in complex and complex hyperbolic quadrics, Bull. Malays. Math. Sci. Soc. 43 (2020), no. 2, 1709–1718, DOI: https://doi.org/10.1007/s40840-019-00769-x.
  • [8] H. Reckziegel, On the geometry of the complex quadric, in: Geometry and Topology of Submanifolds VIII (Brussels, 1995/Nordfjordeid, 1995), World Sci. Publ., River Edge, NJ, 1996, pp. 302–315.
  • [9] M. Kimura and M. Ortega, Hopf real hypersurfaces in the indefinite complex projective space, Mediterr. J. Math. 16 (2019), no. 2, Paper No. 27, 16 pp, DOI: https://doi.org/10.1007/s00009-019-1299-9.
  • [10] S. Montiel and A. Romero, Complex Einstein hypersurfaces of indefinite complex space forms, Math. Proc. Cambridge Philos. Soc. 94 (1983), no. 3, 495–508, DOI: https://doi.org/10.1017/S0305004100000888.
  • [11] Y. J. Suh, Real hypersurfaces in the complex hyperbolic quadrics with isometric Reeb flow, Commun. Contemp. Math. 20 (2018), no. 2, 1750031 (20 pages), DOI: https://doi.org/10.1142/S0219199717500316.
  • [12] M. Kimura, H. Lee, J. D. Pérez, and Y. J. Suh, Ruled real hypersurfaces in the complex quadric, J. Geom. Anal. 31 (2021), no. 8, 7989–8012, DOI: https://doi.org/10.1007/s12220-020-00564-2.
  • [13] M. Kimura, Sectional curvatures of holomorphic planes on a real hypersurface in ( )P ℂn , Math. Ann. 276 (1987), no. 3, 487–497, DOI: https://doi.org/10.1007/BF01450843.
  • [14] M. Lohnherr and H. Reckziegel, On ruled real hypersurfaces in complex space forms, Geom. Dedicata 74 (1999), no. 3, 267–286, DOI: https://doi.org/10.1023/A:1005000122427.
  • [15] M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space, Math. Z. 202 (1989), no. 3, 299–311, DOI: https://doi.org/10.1007/bf01159962.
  • [16] M. Ortega, Classifications of real hypersurfaces in complex space forms by means of curvature conditions, Bull. Belg. Math. Soc. Simon Stevin 9 (2002), no. 3, 351–360, DOI: https://doi.org/10.36045/bbms/1102715060.
  • [17] J. D. Pérez, A new characterization of ruled real hypersurfaces in complex projective spaces, Proceedings of the Tenth International Workshop on Differential Geometry, Kyungpook National University, Taegu, 2006, pp. 23–30.
  • [18] Y. J. Suh, A characterization of ruled real hypersurfaces in ( )P ℂn , J. Korean Math. Soc. 29 (1992), no. 2, 351–359.
  • [19] M. Moruz, M. Ortega, and J. D. Pérez, Ruled real hypersurfaces in the indefinite complex projective space, Results Math. 77 (2022), no. 4, Paper No. 147, 30 pp, DOI: https://doi.org/10.1007/s00025-022-01691-8.
  • [20] Y. J. Suh, On real hypersurfaces of a complex space form with η-parallel Ricci tensor, Tsukuba J. Math. 14 (1990), no. 1, 27–37, DOI: https://doi.org/10.21099/tkbjm/1496161316.
  • [21] S. Klein and Y. J. Suh, Contact real hypersurfaces in the complex hyperbolic quadric, Ann. Mat. Pura Appl. 198 (2019), no. 4, 1481–1494, DOI: https://doi.org/10.1007/s10231-019-00827-y.
  • [22] J. Berndt and Y. J. Suh, Real hypersurfaces in Hermitian symmetric spaces, Advances in Analysis and Geometry, vol. 5, De Gruyter, Berlin, 2022.
  • [23] A. W. Knapp, Lie Groups Beyond an Introduction, Progress in Math., Birkhäuser, 2002.
  • [24] J. Berndt, A homogeneous ruled real hypersurface in the complex hyperbolic quadric, Personal communications in preparation.
  • [25] S.-S. Ahn, S.-B. Lee, and Y. J. Suh, On ruled real hypersurfaces in a complex space form, Tsukuba J. Math. 17 (1993), no. 2, 311–322, DOI: https://doi.org/10.21099/tkbjm/1496162264.
  • [26] J. Berndt and Y. J. Suh, Contact hypersurfaces in Kähler manifold, Proc. Amer. Math. Soc. 143 (2015), no. 6, 2637–2649, DOI: https://doi.org/10.1090/s0002-9939-2015-12421-5.
  • [27] H. Lee and Y. J. Suh, Real hypersurfaces with quadratic Killing normal Jacobi operator in the real Grassmannians of rank two, Results Math. 76 (2021), no. 3, Paper No. 113, 19 pp, DOI: https://doi.org/10.1007/s00025-021-01416-3.
  • [28] C. Woo, H. Lee, and Y. J. Suh, Generalized Killing Ricci tensor for real hypersurfaces in the complex hyperbolic quadric, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (2021), no. 3, Paper No. 117, 31 pp, DOI: https://doi.org/10.1007/s13398-021-01055-x.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c73619e9-c4bf-47e9-a0a3-0faec5bdb251
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.