PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the frequency and type of CT examinations performed in Poland in 2022

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: Computed tomography (CT) is one of the most widely used diagnostic procedures in modern medicine. Despite many technical improvements, CT still exposes patients to significantly higher doses of radiation than other methods of diagnostic imaging. The presented analysis of the number of CT scans performed in Poland in 2022 aims to designate priorities in the process of optimising radiation protection and makes it possible to identify those examinations and patient groups for which action is particularly justified. Material and methods: The data presented is based on an analysis of the National Health Fund (NHF) database of medical services reimbursed in 2022. According to the NHF data, approximately 5.1 million CT examinations were performed. The coding of reimbursed medical procedures used by the NHF in 2022 included 45 different CT procedures. Results: The highest ratio of the number of examinations performed to the number of patients was found in the age group 59-75 years (average 1.35). This ratio varied according to examination type and was closest to 1 for spine and extremities examinations (between 1.1 and 1.2 on average). Irrespective of patients’ age and type of examination, the proportion of female and male patients fluctuates around 50%. Approximately 82% of head and neck examinations are single-phase CTs. Examinations with two or more phases account for about 17% and less than 1%, respectively. Conclusions: Over the past 10 years, both the number of CT scanners and the number of annually performed scans have doubled. Relative to the population size, this is a rate of about 22 scanners per one million people, an average level for European countries, ranging from a maximum of around 37 for Italy and Germany to around 20 for France, Spain, and Romania, according to Eurostat data.
Rocznik
Strony
11--17
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Department of Nuclear Physics and Radiation Safety, University of Lodz, Faculty of Physics and Applied Informatics, Poland
  • Department of Nuclear Physics and Radiation Safety, University of Lodz, Faculty of Physics and Applied Informatics, Poland
Bibliografia
  • 1. Mettler Jr. FA, Mahesh M, Bhargavan-Chatfield M, Chambers CE, Elee JG, Frush DP, et al. Patient exposure from radiologic and nuclear medicine procedures in the United States: procedure volume and effective dose for the period 2006–2016. Radiology. 2020;17:192256. https://doi.org/10.1148/radiol.2020192256
  • 2. European Commission. Medical Radiation Exposure of the European Population. Radiation Protection N° 180. 2015. https://op.europa.eu/en/publication-detail/-/publication/d2c4b535-1d96-4d8c-b715-2d03fc927fc9/language-en
  • 3. UNSCEAR. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources, Effects and Risks of Ionizing Radiation. Uncertainties in risk estimates for radiation-induced cancer. Annex B. 2015, https://www.unscear.org/docs/publications/2012/UNSCEAR_2012_Annex-B.pdf
  • 4. Osei EK, Darko J. A survey of organ equivalent and effective doses from diagnostic radiology procedures. International Scholarly Research Notices. 2013;204346. https://doi.org/10.5402/2013/204346
  • 5. Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248(1):254-263. https://doi.org/10.1148/radiol.2481071451
  • 6. Christner JA, Kofler JM, McCollough CH. Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting International Commission on Radiological Protection publication 103 or dual-energy scanning. AJR Am J Roentgenol. 2010;194(4):881-889. https://doi.org/10.2214/AJR.09.3462
  • 7. Huda W, Ogden KM, Khorasani MR. Converting dose-length product to effective dose at CT. Radiology. 2008;248(3):995-1003. https://doi.org/10.1148/radiol.2483071964
  • 8. National Research Council. 2006. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. Washington, DC: The National Academies Press. https://doi.org/10.17226/11340
  • 9. Shrimpton PC, Wall BF. The increasing importance of X ray computed tomography as a source of medical exposure. Radiation Protection Dosimetry. 1995;57(1-4):413-415. https://doi.org/10.1093/oxfordjournals.rpd.a082572
  • 10. Balonov MI, Shrimpton PC. Effective dose and risks from medical X-ray procedures. Ann ICRP. 2012;41(3-4):129-141. https://doi.org/10.1016/j.icrp.2012.06.002
  • 11. Brody AS, Guillerman RP. Don't let radiation scare trump patient care: 10 ways you can harm your patients by fear of radiation-induced cancer from diagnostic imaging. Thorax. 2014;69:782-784. https://doi.org/10.1136/thoraxjnl-2014-205499
  • 12. Grant E, Brenner A, Sugiyama H, Sakata R, Sadakane A, Utada M, et al. Solid cancer incidence among the life span study of atomic bomb survivors: 1958-2009. Radiat Res. 2017;187:513-537. https://doi.org/10.1667/RR14492.1
  • 13. Cologne J, Kim J, Sugiyama H, French B, Cullings H, Preston D, et al. Effect of heterogeneity in background incidence on inference about the solid-cancer radiation dose response in atomic bomb survivors. Radiat Res. 2019;192(4):388-398. https://doi.org/10.1667/RR15127.1
  • 14. Cahoon E, Preston D, Pierce D, Grant E, Brenner A, Mabuchi K, et al. Lung, laryngeal and other respiratory cancer incidence among Japanese atomic bomb survivors: an updated analysis from 1958 through 2009. Radiat Res. 2017;187(5):538-548. https://doi.org/10.1667/RR14583.1
  • 15. Rehani MM, Melick ER, Alvi RM, Khera RD, Batool-Anwar S, Neilan TG, et al. Patients undergoing recurrent CT exams: assessment of patients with non-malignant diseases, reasons for imaging and imaging appropriateness. Eur Radiol. 2020;30(4):1839-1846. https://doi.org/10.1007/s00330-019-06551-8
  • 16. Rehani MM, Hauptmann M. Estimates of the number of patients with high cumulative doses through recurrent CT exams in 35 OECD countries. Phys Med. 2020;76:173-176. https://doi.org/10.1016/j.ejmp.2020.07.014
  • 17. Tabari A, Li X, Yang K, Liu B, Gee MS, Westra SJ. Patient-level dose monitoring in computed tomography: tracking cumulative dose from multiple multi-sequence exams with tube current modulation in children. Pediatr Radiol. 2021;51(13):2498-2506. https://doi.org/10.1007/s00247-021-05160-2
  • 18. Sodickson A, Baeyens PF, Andriole KP, et al. Recurrent CT, cumulative radiation exposure, and associated radiation-induced cancer risks from CT of adults. Radiology. 2009;251:175-184. https://doi.org/10.1148/radiol.2511081296
  • 19. Brambilla M, Vassileva J, Kuchcinska A, Rehani MM. Multi-national data on cumulative radiation exposure of patients from recurrent radiological procedures: call for action. Eur Radiol. 2020;30:2993-2501. https://doi.org/10.1007/s00330-019-06528-7
  • 20. Brambilla M, Cannillo B, D'Alessio A, Matheoud R, Agliata MF, Carriero A, Patients undergoing multiphase CT scans and receiving a cumulative effective dose of ≥ 100 mSv in a single episode of care. Eur Radiol. 2021;31(7):4452-4458. https://doi.org/10.1007/s00330-020-07665-0
  • 21. Zondervan RL, Hahn PF, Sadow CA, Liu B, Lee SI. Body CT scanning in young adults: examination indications, patient outcomes, and risk of radiation-induced cancer. Radiology. 2013;267(2):460-469. https://doi.org/10.1148/radiol.12121324
  • 22. Perisinakis K, Seimenis I, Tzedakis A, Papadakis AE, Damilakis J. Triple-rule-out computed tomography angiography with 256-slice computed tomography scanners: patient-specific assessment of radiation burden and associated cancer risk. Invest Radiol. 2012;47(2):109-115. https://doi.org/10.1097/RLI.0b013e31822d0cf3
  • 23. Loose RW, Popp U, Wucherer M, Adamus R. Medizinische Strahlenexposition und ihre Rechtfertigung an einem Grossklinikum: Vergleich von strahlungs- und krankheitsbedingtem Risiko [Medical radiation exposure and justification at a large teaching hospital: comparison of radiation-related and disease-related risks]. Rofo. 2010;182(1):66-70. https://doi.org/10.1055/s-0028-1109616
  • 24. Ustawa z dnia 27 sierpnia 2004 r. o świadczeniach opieki zdrowotnej finansowanych ze środków publicznych. Dz.U.2022.0.2561
  • 25. Rehani MM, Yang K, Melick ER, et al. Patients undergoing recurrent CT scans: assessing the magnitude. Eur Radiol. 2020;30:1828-1836. https://doi.org/10.1007/s00330-019-06523-y
  • 26. Healthcare in households in 2020. Statistics Poland, Social Surveys Department, Statistical Office in Krakow, Centre for Health and Health Care Statistics. ISBN 978-83-66466-78-4. https://stat.gov.pl/obszary-tematyczne/zdrowie/
  • 27. Eurostat data: Medical technologies - examinations by medical imaging techniques (CT, MRI and PET) (hlth_co_exam): https://ec.europa.eu/eurostat/web/health/database
  • 28. Biuletyn Statystyczny Ministerstwa Zdrowia, Centrum Systemów Informatycznych Ochrony Zdrowia, Warszawa 2014
  • 29. Biuletyn Statystyczny Ministerstwa Zdrowia 2023, Centrum e-Zdrowie, Warszawa 2023. https://ezdrowie.gov.pl/portal/home/badania-i-dane/biuletyn-statystyczny
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c7327858-715a-46b6-9996-57614208629c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.