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by a PLC
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Abstract. The paper presents an original idea of the selective control program execution that allows significant response time reduction.

The exhaustive analysis of the PLC program performance is given. An analytic approach explains the idea of the selective control program

evaluation and gives the requirements for its feasibility. There is presented a systematic and formal method of program analysis based on a

data flow graph approach. The method generates acyclic graph from the control program that is subject of optimization, variable allocation

and instruction generation. The graph approach allows determining variables dependencies and task partitioning required by selective program

execution. The method utilize the hardware supported variable changes detection. It is transparent for system operation and enables evaluation

of blocks that require update.
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1. Introduction

A PLC is a custom computer for implementing a control pro-

grams. It is able to handle multiple independent processes.

In opposite to typical (imperative) programming that focuses

on sequential processing of a particular task a PLC handles

multiple control tasks [1]. The programming concept enables

distributing computing power uniformly among all tasks. Each

task is constructed in a form of function that determines the

control value in discrete approach.

The control system is described by three sets of variables

X , Y , Q. Items of the set X are associated with control input

signals, while items of the set Y are associated with output

signals. Variables of the set Q store an internal state of con-

trolled process. The system is described by functions f and g

that determines variables value of Y and Q sets:

Qn+1 = f(X, Qn),

Y = g(X, Qn).
(1)

The discrete operation of the system is emphasized by

variables value of the set Q. Indexes n and n + 1 denotes

current and next cycle value respectively.

The PLC is a part of control system (Fig. 1) that togeth-

er with sensors, actuators and controlled object constitutes a

control system. The response time of the controller should

be minimized in order to immediately react for the changes

of the input conditions [2, 3]. This requirements differs from

a typical computing application working without direct feed-

back. A calculation throughput is a primary goal in such sys-

tem while a calculation latency is less important. This ap-

proach favours pipelined constructions that distribute calcula-

tions into several processing steps. Samples are processed in

overlapped fashion with possible the highest throughput and

stages utilization introducing processing latency between in-

put and output samples. A PLC operates in a closed loop with

controlled object and must not operate in pipelined fashion.

A tight correspondence between control algorithm and object

response is required [4–6].

Fig. 1. A PLC based control system

The PLC computation cycle is shown schematically in the

Fig. 2 [7]. It is equipped with proprietary operating system

that manages entire system operation. The block named Pro-

gram Execution is responsible for executing control algorithm

delivered by user. The cycle dedicated for collecting input sig-

nals transfer inputs value to process image memory protect-

ing against data race. The calculation results are dispatched

from process image memory at the end of processing eliminat-

ing accidental output switching during processing. Remaining

part of the program loop is responsible for performing system

and housekeeping functions. For further performance consid-

erations these tasks has been grouped into system functions.
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Fig. 2. Typical computation cycle of a PLC

This paper focuses on reducing user program execution

time. The chapter two evaluates the program execution model.

It is aimed at determining conditions of the control program

recalculation. The efficiency of event driven calculations is

shown. The chapter three brings the formal methodology of

control program analysis, optimization and dependence trac-

ing. It utilize the original graph representation suitable for

exhaustive control program evaluation. The problem of pro-

gram partitioning is also solved with graph based approach.

The section four discuss a specific hardware support that sig-

nificantly improves the event driven system and reduces pro-

grammatic overhead with determining program blocks to be

recalculated. Finally the paper is concluded with an example

that illustrates the method application and the obtained result.

2. The selective control program processing

2.1. The PLC performance. For comparison purposes of

the PLC efficiency manufactures describe its performance by

a scan time that is an equivalent of execution of 1000 in-

structions. The test set is a mixture consisting of 70% of

logic instructions and 30% of other. It is based on analysis of

a representative programs set given in [8]. This factor does

not describe the controller throughput for a particular control

system. The PLC program performance and the PLC system

itself is measured by response time for an input signal change.

The diagram (Fig. 3) shows graphically execution cycle. The

interval marked tEV is a range of time for the event (a vari-

able value change) to be processed in the following cycle. The

response time of the PLC vary and depends on the moment of

time an event occurs. It assumes that inputs state are latched

and collected at the beginning of a cycle (tIN ) and results are

dispatched at the end (tOUT ). All system activities given in

detail are aggregated into a single block of system activities

(tSY S). Presented model allows for analytic approach to the

response time. The response time for an input event falls into

a range determined by the shortest (tR min) and the longest

time (tR max):

tR min = tIN + tCY + tOUT = tSCAN − tSY S ,

tR max = tSY S + 2 (tIN + tCY + tOUT ) = 2tSCAN − tSY S .
(2)

Fig. 3. The PLC response and observation times definitions in ref-

erence to computation cycle

For the safety reasons the longest one (tR max) is taken in-

to considerations. The worst case analysis demonstrates that

the response time of a PLC is almost equal twice the scan

time (tSCAN ).

It could be noticed that the response time is radically re-

duced to the most optimistic case when an event occurs close

to input reading cycle. The optimistic response time is even

shorter then single scan time. For a periodically changing

signal its period must be greater than a scan time. From the

other hand the control process described by (1) evaluates sets

Q and X . Variables belonging to the set Q store an internal

state of a controlled process. Unpredictable execution time of

a control program disables use of Q items for creating time de-

pendencies [9]. The time dependencies are implemented with

use of dedicated hardware timer units. In presented approach

timers outputs are associated with variables that belong to the

set X even though they are internal components of a PLC.

Finally, the control equation for two discrete moments of time

when variables xi are constrained to constant values is:

∀
x∈X

xi = const :

{

f(X, Qn) = f(X, Qn−1) = Q = const

Y = g(X, Q) = const

(3)

As it is illustrated the control program calculation should be

triggered only if there are changes detected in the variables

value of set X . The set is associated with all types of input

signals controlling the process (object sensors, timers).

2.2. Implementation outline of an event driven concept.

Based on presented consideration the following question can

be formulated. “Is it possible to reduce response time intro-

ducing non-standard program execution approach ?”. This

approach is presented and called an event driven processing.

It was inspired by analysis of the process control given in

[10]. The computation time of the program requires nonstan-

dard implementation of emergency control due to very long

execution time of the main loop.

The concept of an event driven processing is shown in

Fig. 4. The idea assumes a conditional execution of program

blocks provided a change in respective input set is detected.

This approach influences many aspects of a PLC architecture.

It can be introduced as early investigation of the idea that is

implemented in a PLC program only. This enables to con-

firm its feasibility and estimate the performance. A custom

compiler has been proposed that automatically implements

the event driven processing based on an automatic user pro-
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gram partitioning. This approach is further extended not only

to the program construction but also to a design of a specific

hardware architecture that supports the developed process-

ing methodology. The hardware-software co-design approach

further improves the performance by data transfer connected

with changes detection. Precisely tailored hardware platform

and specific compiler support allow to achieve the best per-

formance with a described approach.

Fig. 4. Conditional execution of a task

2.3. The event driven method performance assessment.

The term event driven processing requires formal justifica-

tion of its feasibility and performance assessment. The most

important question concerns the correctness of calculations

performed by proposed model. The other objective is deter-

mination of the system performance in comparison to standard

approach. All PLCs are ancestors of the micrprogrammable

system that evaluates single argument at a time. The funda-

mental assumption requires that the shortest signal change

time TCHG is longer than the processing time expressed by

tSCAN

tSCAN < TCHG. (4)

This assumption (and requirement) assures that controller

is able to work out the response for all input signal changes

and none of the events is missed. When the number of ser-

viced objects and input signals is growing both the scan time

and the response time are increasing. The increase of the

response time reduces the application area of the controller

determined by its throughput. For the single task (Fig. 5A)

the response time is given as follows:

tRE min = tIN + tE + tT + tOUT ,

tRE max = tSY S + 2 (tIN + tE + tOUT ) + tT .
(5)

When compared to a standard approach the difference ex-

ecution time can be calculated. Let assume that the task ex-

ecution time tT remains unchanged. This allows to compare

two approaches and determine requirements for event driven

concept to be competitive to standard approach. Let’s consider

the response time differences:

∆tR min = tR min − tRE min = −tE ,

∆tR max = tR max − tRE max = tT − 2tE ,

∆tRav = tT − 3tE .

(6)

Fig. 5. Response of programmatic event driven processing

The response time increase (∆t) comparison allows to de-

termine the limitation put on the conditional execution block.

The minimum response time is increased by conditional ex-

ecution test (negative decrease). The event driven program-

matic approach due to its nature always reveals increase of

minimal response time. The maximal response time allows to

determine ratio between execution time of conditional test in

reference to task execution time. The reduction of maximal

response time will be observed for tE <
tT

2
. The average

response time will be reduced when the conditional test exe-

cution time takes less than third part of execution time.

The single block control program was used for evalua-

tion purposes. The control program is constructed from sev-

eral tasks (blocks) that are executed in a given sequence by

operating system [5, 6]. This observation is very important.

There can be derived requirements for the event driven con-

cept based on this observation. The task block is preceded

with the conditional block that determines necessity of re-

calculating the task. The (3) gives a criterion for the task

recalculation that is shown in form of a flow graph (Fig. 4).

The figure depicts the execution time of the task triggering tE
and task execution tT . The maximal response time for multi-

ple tasks (Fig. 5B) when all require recalculation is given as

follows:

tRM min = tIN +
∑

i

(tEi + tTi) + tOUT ,

tRM max = tSY S +

(

tIN +
∑

i

tEi + tOUT

)

+
∑

i

tTi.

(7)

When probabilistic approach is used than from the (4) the

minimal signal period can be determined. We can also assume

that not all signals are switching with the maximal frequency.

This assumption will lead to the selective control task execu-

tion for particular scan. For simplicity let assume the uniform

distribution of tasks execution time (all tasks require same

period of time for computation) and only one task will be

triggered during a single loop run. Let limit consideration to

the program execution time tP :

tP =

n−1
∑

i=0

tEi + tTj . (8)
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Let the maximal execution time of all conditional entry blocks

is given as a fractional part of all computation execution. The

factor d according to consideration is given as:

n−1
∑

i=0

tEi =
1

d

n−1
∑

i=0

tTi. (9)

Than the program execution time is described in terms of task

execution time and respective factors:

tP =
n + d

nd

n−1
∑

i=0

tTi. (10)

The relative program execution speedup ηP according to con-

sidered model is described as follows:

ηP =
nd

n + d
. (11)

The above statement proofs the essence of program split-

ting into tasks. There are shown benefits coming from pro-

gram splitting that is proportional to the number of tasks n.

The event driven processing introduces additional cost of task

identification. The efficiency of the method is proportional to

the identification ratio given by d. In order to make the event

driven processing competitive the task identification time must

be minimized. This is addressed by a program generation

methodology and a hardware assisted change detection.

3. Implementation of selective program

processing

For the purpose of selective processing each program should

consist of two blocks respectively linked that are a conditional

trigger block and a standard processing block. This procedure

can be applied manually to the existing program. A manual

preparation is inefficient, complicated and time consuming.

Moreover, the improperly constructed trigger block will not

be able to call processing block when required, resulting in

an inadequate behaviour and incorrect control processing.

3.1. Calculation dependencies in LD programs. The for-

mula (3) describes a general requirement for event driven

processing. In a PLC there are three sets of variables that

are associated with inputs, outputs and internal markers. Let’s

consider an exemplary ladder schematics shown in Fig. 6. The

inter rung dependencies are marked with dashed lines. The

case A refers to recently evaluated rung scan. The waveform

next to the diagram shows the event propagation from the in-

put through all rungs. The case B shows the concept of pulse

generation where the first rung refers to the variable calcu-

lated by the second rung. When the first rung is evaluated,

the value of the q4 variable comes from previous scan cycle

(not shown tn − 1). The input i4 change is evaluated by both

rungs and the value of q3 and q4 are assigned. Changes of q4

variable cause necessity of re-evaluating the network. When

calculations are only triggered by variable associated with in-

put signals there is a possibility of suppressing propagation of

some events inside the program. The method for determining

variable dependencies is an essential requirement for success-

ful implementation of event driven processing. Authors have

developed the method that not only allows to determine the

variable dependencies but also allows to optimize and track

dependencies in the entire control program.

Fig. 6. Calculation dependencies in Ladder Diagrams

One of the possible approaches for a LD dependencies

tracking is shown in work [11]. It attempts to investigate the

sequential properties of the analysed network and translate

it to the GRAFCET (SFC) representation. For this purpose

dependencies and simultaneity graphs have been introduced.

Those graphs have also been employed for a hardware im-

plementation of LD [12]. Similar idea has been described by

[13] for partitioning of the LD for multiple context hardware

execution. The exhaustive program analysis demonstrates ap-

proach given in [14]. The specific derivative of a data flow

graph has been developed and named the Enhanced Data Flow

Graph – EDFG. It is applied for automatic analysis of PLC

programs. The concept has been extended from LD to IL

and SFC. The last method utilizing an EDFG is used for: ex-

tracting control program properties for event driven concept,

program optimization and code generation.

3.2. Extracting LD program semantics with EDFG. In or-

der to extract properties of the program an intermediate rep-

resentation has been developed that allows to formulate al-

gorithmic approach to LD program analysis and extracting

its properties. It enables recording of logic and arithmetic

operations. It tracks variables and operations dependences.

The EDFG reveals parallel operations, branches and whole

tasks. Depending on the target platform abilities and map-

ping methodology advantages can be taken from reviled par-

allelisms and task partitioning. Elimination of the dead code

is an essential and natural effect of the control program graph

representation. The described method enables optimized code

generation that substantially differs from method presented

in [15].

The EDFG is a directed acyclic graph. It is given by tou-

ple: G = 〈V, E〉 where: V is a set of nodes and E is a set
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of directed edges. The directed edge e is described by an

ordered triple e = 〈vSRC , vDST , a〉 where: vSRC is a prede-

ceasing node and vDST is a successor node of the directed

edge. The a is an attribute of the edge chosen from the set A.

The set A consist of unary operations applicable for allowed

nodes set. Attributed edges combines an assignment operation

with a logic or arithmetic complement. This modification sig-

nificantly simplifies logic and arithmetic transformations and

optimizations.

The LD is converted into EDFG with application of map-

ping rules that are shortly given in the Fig. 7. The graph

represents the sequential dependencies of calculation in en-

tire program. Those dependencies and properties are difficult

to track when direct code generation methods are applied. The

first two cases show a variable value access. It distinguishes

between unassigned (Fig. 7A) and assigned (Fig. 7B) vari-

able access. There should be made a remark that an EDFG

implements nodes responsible for value read and assignment

separating them from operations.

Fig. 7. LD to EDFG mapping

Value read nodes and value write nodes allow to link

an EDFG with variables sets. The value access distinguishes

between situations where access is made before assignment

where the value comes from previous cycle or is worked out

in current cycle as a result of preceding assignment. In the

second case a value source node is accessed (Fig. 7B). If

later the variable is reassigned the constructed graph tracks

the specified calculation dependencies and current variable

value source. Switches and nodes are the basic components

of a network. The EDFG equivalent structures are shown in

points C, D and E of the Fig. 7. Points C and D refer to the

switch implementation. Attributed edges simplify handling of

logic inversion (D). The schematic node is constructed with

use of a logic OR operation. The node translation process is

given in the diagram E of Fig. 7. Independently of the num-

ber of schematic node drivers the logic OR node is created

that merges flow from multiple sources. Finally an assignment

operation equivalent EDFG is shown. A write variable node

is connected to driving node assigned recently. The EDFG

is subject of optimization process where logic and algebraic

rules are applied. The detailed consideration to EDFG map-

ping can be found in [14, 16]. The EDFG generation process

and basic transformations are illustrated with following exam-

ple.

An exemplary LD diagram is given in the Fig. 8A. The

initial transformation perform substitution of elementary com-

ponents with an equivalent EDFG structures. The process is

continued until all components of input LD are substituted

with EDFG nodes. The raw diagram just after generation

process is shown in point B. Obtained EDFG is subject of

optimization process based on node merge and constant prop-

agation. The final result is shown in point C.

Fig. 8. The LD to EDFG transformation process and later optimiza-

tion

3.3. The PLC code generation from the EDFG represen-

tation. The EDFG perfectly records the operations sequences

given with a LD. The simplicity of creating and handling pro-

motes using it instead of other partial analysis methods that

not always guaranty achieving desired goals. The code gener-

ation process converts the EDFG representation into instruc-

tions sequence acceptable by a PLC CPU. The code generation

process visits in reverse direction of edges all nodes starting

from assignment nodes. This process is applied for variables

associated with output and internal signals that were not op-

timized. The EDFG representation contains value read and

write nodes associated with variables. A variable associated

with internal marker is retained only if it is both assigned

and referred to. A variable belonging to output set is retained

when an assignment to it is made. A variable associated with
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an input signal without reference (read access) is excluded

(eliminated) from an input set.

The iterative code generation algorithm in simplified form

for operation nodes has been depicted in Fig. 9. In the part A

is given general case of possible node arguments. The node

marked with grey colour is one under code generation process.

The part B of the Fig. 9 shows diagrams similar to these used

for the syntax definition [17]. In the rectangles are placed

names of procedures that are called when particular path in

code generation process is chosen. The rounded box contains

a terminal part for code generation process in form of IL

operators, arguments or parenthesis.

Fig. 9. A PLC code generation from the EDFG

The recursive process visits all argument nodes of cur-

rently evaluated node and follows respective procedure for

each argument. The processing differs for the first argument,

next arguments and already visited nodes. The first argument

(arg 1) sets the initial value while remaining are processed in

accumulative fashion according to IL language requirements.

If the selected argument is an operation node the recursive ap-

proach is used. It calls the node procedure for it. The attribute

(attr) reflects to logic inversion or arithmetic complement op-

eration. For example the inversion attribute for an argument of

a logic AND operation results in ANDN operation generation.

The nodes that are referred to multiple successors are cal-

culated only once. A temporary variable is used for result

sharing with all child nodes. This approach allows to take

benefits from extracting common subexpressions. Formally

the temporary variables are created for nodes that adjacen-

cy matrix contains more than one nonzero item in a row. In

practical programmatic implementation the reference counter

is used (instead of highly impractical adjacency matrix) [18].

The multiple times referred operation node requires creat-

ing temporary variable. The problem of temporary variables

handling is shown in the Fig. 10. The variable lifetime associ-

ated with particular node extends from the calculation (a grey

filled circle) to the last reference to it. The calculation model

of the IL assumes that result is stored in accumulator register.

A following operation does not require an internal variable

creation. The result must be protected when multiple opera-

tions refers the same argument. The internal variables alloca-

tion process is based on the left edge algorithm [19]. Even

though that algorithm is dedicated to routing an ASIC cells

it can be successfully applied for variable management that is

similar to a signal routing. Internal variables are created for all

nodes that are referred more than once. In order to determine

a variable lifetime the reference counter is used. It is initial-

ized with a number of referring nodes. Whenever reference to

the node is made the reference counter is decremented. If the

reference counter reaches zero the internal variable is released

(and can be reused). The internal variables set is initially emp-

ty. It is divided into subsets of free and assigned variables.

New variable is created only if the free variable subset is emp-

ty. After completing the code generation process the variable

set cardinality determines the number of internal variables.

It corresponds to memory requirements imposed to the PLC.

The number of required intermediate variables can be reduced

by operation scheduling.

Fig. 10. The internal variables handling

An exemplary PLC code generation process with variable

management is shown in the Fig. 11. The signal R is an inter-

nal signal. The LD program (A) is converted to the equivalent

EDFG that is a subject of described instruction generation

process for a PLC. The optimized EDFG is shown in the

Fig. 11B. The signal R and respective variable is optimized.

It is shown in the diagram with dashed lines and grey filling.

The table in point C depicts in details the recursive gener-

ation process. It illustrates the node evaluation according to

the methodology shown in the Fig. 9. Each operation node

is numbered (indexed) in order to explicitly identify it. The

generation process is performed for output and retained inter-

nal variables. Intermediate variables (associated with internal

signals e.g. signal R) that are not used for storing process

information between calculation cycles are removed. This is a

part of an optimization process that enables removal of unused

nodes of an EDFG.

The generation process starts from variable assignment

node of the EDFG. According to the methodology shown in

Fig. 9 argument nodes are recursively visited. Generation pro-

cedures nesting is shown in the table next to produced result

in form of an IL code. The process starts from the assign-

ment node of variable W and traces back to operation nodes.

The first operation node is the AND node with index 3. The

trace process selects arguments from vertical path (as shown

in figure) traversing nodes 4 and 5 until reaching the vari-

able A reading node. Both arguments of node 5 are delivered

from variable read nodes. This enables generation of state-
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ments shown in lines 1 and 2. Similar process is repeated for

the node 4. The argument of node 3 is delivered by branch

consisting of nodes 1 and 2 and respective variables. Enter-

ing this path generates the operation with parenthesis shown

in line 3 that is completed after branch evaluation. Similar-

ly to already described recursive generation process starting

from the node 2 graph is back traced until node 1. The gen-

eration process produces sequence of instruction responsible

for implementing operations described by nodes 1 and 2. The

node 2 is referred by nodes 3 and 6. The result is immediately

available for node 3 and must be preserved for evaluation of

node 6. For this purpose the internal variable V 1 is created.

It should be recalled that variable R has been optimized. Im-

mediately after leaving node 2 evaluation result is passed to

node 3 that is shown in line 9 that completes the operation by

closing the parenthesis. Finally the evaluation process is initi-

ated for V variable. In the same way as for W variable reverse

graph traversal is performed until the node 8. Starting from

this point generation process is continued. The node 6 second

argument is the node 2 that has already been evaluated and

result was stored in an automatic temporary variable V 1. The

variable V 1 is used instead of repeated evaluation of nodes 1

and 2. The internal variable management is shown in last

column of the table with grey circles denoting value assign-

ment and white circles denoting value access. The line that

connects points denotes the variable lifetime. The moment of

fetching V 1 value is the last access to it. The variable V 1 is

released for new value assignment (variable lifetime line ends

at access point).

Fig. 11. An example of complete PLC code generation process

3.4. EDFG based program decomposition. The standard

program is obtained in two steps from the LD description. Ini-

tially it is converted into EDFG representation. An instruction

stream is generated from intermediate form after optimization.

The two steps generation process improves obtained result in

several aspects. The translation method optimizes a program

by reducing the logic and arithmetic expressions, dead code

elimination and internal variables optimization. The problem

of extracting processing conditions are model dependent [20].

The EDFG models calculations and enables formal analysis

of dependencies for each variable assignment. Let the set Sf

called function support, consist of variables for which positive

and negative cofactors are different:

Sf =

n
⋃

i=1

xi :fxi
6= fxi

,

fxi
= f (x1, . . . , xi−1, 1, xi+1, . . . , xn) ,

fxi
= f (x1, . . . , xi−1, 0, xi+1, . . . , xn) .

(12)

The set Sf is determined by reverse direction graph tra-

verse until variable read nodes. This property allows for

automatic program partitioning for event driven processing.

The program partitioning process extracts independent tasks

Sf ∩ Sg = ∅ and also allows to determine mutual dependen-

cies for creating variables watched set.

The task partitioning is closely connected with abilities of

variable changes detection. The trigger set Tf for function f

is defined as:

Tf =

n
⋃

i=1

ti : ti ∈ Sf ,

Tf ⊇ Sf .

(13)

The trigger item variable ti is an atomic item that system

is able to observe or calculate and is given as follows:

ti =

m
⋃

j=1

(

xta(i,j),n ⊕ xta(i,j),n−1

)

, (14)

where ta(i, j) is a function that maps the variables to trigger

variable ti, n denotes the current calculation cycle, m declares

the number of variables an elementary trigger item consists

of. There the following remarks about trigger variables can

be made. The ideal case is the one to one correspondence be-

tween the trigger item ti and the xi variable. Unfortunately,

the trigger item incorporates several variables due to imple-

mentation limitation and processing overhead trade off. The

trigger variables calculation can be implemented as a pure

software or a hardware assisted decision block. The hard-

ware implementation reduces the programming overhead and

allows for calculating the trigger conditions in parallel with

normal operations. The trigger calculation requires additional

storage for value comparison coming from previous and cur-

rent cycle. In case of software implementation this introduces

requirement of additional memory for storing the previous

value for comparison purposes. This overhead is eliminated

by hardware assisted implementation that takes benefit from

simultaneous read and write access to memory. To satisfy a

multiple cycle variable changes propagation that has been ex-

emplified in 3.1 all variables in EDFG with read access are

monitored for changes.
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4. Hardware assisted event detection

The event driven processing implemented with the use of pro-

grammatic approach introduces an overhead related to trigger

calculation and requires additional storage space for difference

tracking. The significant performance benefits can be achieved

by integrated hardware-software co-design. Integrating vari-

ables changes tracking into a hardware significantly reduces

the programmatic overhead and memory requirements. For

specific implementation and evaluation purposes the FPGA

devices are used. The unit is implemented as a part of the

controller core [21].

The memory content difference detection is implemented

without introducing any overhead in memory access (Fig. 12).

The difference observer circuit is fully transparent for the

system. The hardware assisted difference observation facili-

tate meeting the constraints and performance requirements for

event driven system given by (6–11). In order to enable com-

parison between a current memory cell content and a written

value the memory module with separated input and output

buses is used with an edge triggered data write (sometimes

called an addressable register). The difference detector accu-

mulates observed differences since releasing an INIT signal.

Fig. 12. The memory content transparent difference detector

The presented memory content observer guards entire

space of a memory block. It does not allow to implement

functionality described by (12–14) that forms guarded area

for program block. In order to meet given requirements the

unit shown in Fig. 13 has been designed. The figure depicts

the guarded memory and an instance of difference detector

unit. A decomposition process is applied that transforms the

memory address into guarded regions identifiers marked as

TA. This allows to reduce the number of address lines ob-

served by aggregation LUT. Finally inside the guard detec-

tor the desired areas are observed according to the aggrega-

tion LUT memory content. Both membership and aggregation

memories contents do not change at run time. They are pro-

grammed with guarded areas configuration data obtained at

program compilation. The aggregation result is stored in a

buffered register. The INIT input is activated at the begin-

ning of the calculation cycle after input updates. It transfers a

trigger flag from working register to the output register. The

working register is initialized and a trigger calculation starts

over guarding entire calculation cycle. For the first calcula-

tion cycle the trigger register is initialized with 1 requesting

obligatory calculation process in first processing cycle.

Fig. 13. The configurable difference detector

The guard unit has been implemented in Spartan FPGA

families S3, S3E and S6. There has been considered two con-

figuration of the unit with 64 or 256 programmable areas.

The detailed resource utilization is shown in Table 1. The

simple combinatorial path of unit does not hinder memory

block operation. This is extremely important as the unit must

be transparent for a PLC CPU operation. The event driven

program execution requires a set of guard units. They are ac-

cessed as memory cells. Trigger flags are gathered in marker

area space enabling PLC CPU access to them.

Table 1

Type FPGA
LUT

FF fMAX [MHz]
Logic RAM

G64

S3 19 4 2 219

S3E 19 4 2 232

S6 14 1 2 491

G256

S3 40 16 2 184

S3E 32 16 2 181

S6 16 4 2 407

5. Event driven program implementation

In order to illustrate substantially benefits coming from the

event driven program execution an exemplary program has

been selected. The program in form of the LD and its IL

equivalent are shown in Fig. 14. The program consists from

two control blocks mutually synchronized by B1 and B2 sig-

nals. The standard program consists of 22 instructions. Let

assume a unit execution time for each instruction. The pro-

gram does not contain conditional paths and it is executed

uniformly in 22 time units.

The program can be accommodated for an event driven

handling by splitting it into 4 groups according to driven

variables. It should be noticed that selective execution inserts

additional instructions for conditional evaluation of program

blocks dependant of trigger variables state. The conditional

block boundaries are determined by output variables assign-

ments. This partitioning does not meet requirements of event

driven processing while blocks for W1 and W2 signals doesn’t

meet instructions ratio between block and conditional entry.

The output signals are merged into sets {V1, W1} and {V2,

W2} with maximal number of common signals. The addition-

al parts that are added to the program are shown in column

for event driven blocks. There are defined two trigger vari-

ables T 1 and T 2 that controls evaluation of each block. Those
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variables comes from configurable difference detectors. The

places in standard program where are inserted the blocks for

conditional execution are marked with grey rectangles. The

program with selective execution adds 4 extra instructions

that enable conditional execution of the blocks.

Fig. 14. The LD program implementation with event driven process-

ing

5.1. The event driven program implementation perfor-

mance. The event driven program is longer than its standard

implementation but contains blocks that are executed condi-

tionally. Schematically the calculation time is shown in the

Fig. 15. There are marked two blocks evaluating V1, W1 and

V2, W2 respectively. In Fig. 15A there is shown the standard

execution approach. On the time chart there are marked max-

imal and minimal calculation times. In Fig. 15B and Fig. 15C

are shown exemplary calculations for event driven processing.

There are marked grey rectangles T1 and T2. They depict con-

ditional entry to respective processing blocks The execution

time for stable input signals is only 4 instructions where only

blocks T1 and T2 are executed in loop. When changes are ob-

served respective parts of program are included in execution

process. It can be noticed that a signal change of B1 or B2

triggers evaluation of both blocks constituting the worst case

calculation scheme shown in Fig. 15B. The average calcula-

tion time for the standard approach is 33 instructions while

for event driven processing does not exceed 28 instructions.

The worst case calculation time is 44 to 30 cycles instructions.

The typical operation scheme is given in Fig. 15C. Only one

calculation block is triggered. In such case the times.

The event driven approach response time improvement is

observed with a growing number of conditionally executed

blocks of infrequently changing signals. Than the decision

block constitutes only a small fraction of processing blocks

evaluation time. When there are two instances of the exem-

plary processes implemented in a program the average calcu-

lation time is 66 to 34 and maximal calculation time 88 to 38.

An example of industrial object that is controlled with pro-

gram, that evaluation time exceeds an acceptable emergency

response is described in [10]. The event driven approach en-

ables splitting a long program into blocks that are evaluated

with signal changes arrival. This significantly reduces a re-

sponse time assuring a fast response to an emergency request.

Fig. 15. Comparison of calculation times

6. Summary

The paper presents the selective program processing method

for the PLC. It is focused on significant reduction of response

time by eliminating redundant calculations. It brings entire a

solution starting from a theoretical background of the process-

ing concept with a performance evaluation and its limitations.

Then it moves to an intermediate program representation with

Enhanced Data Flow Graphs (EDFG). This part shows the

concept of translating the control program given with the LD

to the data flow graph. The graph representation is used for

optimisation of a program. The next step describes the code

generation method from an EDFG. There is shown the itera-

tive algorithm for a code generation together with temporary

variables allocation. Finally, the EDFG is used for an auto-

matic program partitioning enabling selective processing. The

developed system takes benefits from hardware units that de-

tect differences in a memory content. The unit is complete-

ly transparent for memory operations. The memory guarded

area is fully programmable. The proposed decomposition of a

membership function of the guarded area reduces a hardware

complexity and propagation time of the difference detector

unit.

The research process over an efficient control program im-

plementation is ongoing. The FPGA technology enables quick

evaluation of complex systems and solutions. The next step

that is moving an event driven processing further is a system-

atic method of passing entire the scheduling process of tasks

to hardware unit that will select tasks for execution. This will

enable to keep easy programmability with the highest perfor-

mance of the system obtained through the developed program
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analysis and synthesis methods eliminating execution over-

head.
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