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Abstract. Inspired by the recent results of A.E. Abbas we determine continuous multivariate
utility functions invariant with respect to a wide family of transformations related to the
shift transformations.
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1. INTRODUCTION

A fundamental step in decision analysis is the construction of a utility function
representing a preference relation over lotteries. There are several approaches to
this problem. One of them is based on the notion of invariance of a utility func-
tion. The notion has been introduced by Pfanzagl [8] and developed in [1-5]. Let
us recall that a utility function U is invariant with respect to a family transfor-
mations I' provided that, for every member ~ of I', U and U o « represent the
same preference relation over lotteries. Since every utility function over lotteries
is uniquely determined by its values on a set of degenerate lotteries and this set
can be identified with the set of outcomes, it is enough to consider the problem
of invariance on the set of all outcomes. Recently, Abbas [2] extended the notion
of invariance onto multivariate utility functions. One of the main problems con-
sidered in [2] concerns n-attribute utility functions defined on a Cartesian product

X?:l I; of non-degenerate intervals I,..., I, and invariant with respect to a fam-
ily of transformations {’V(tl,...,tn) DX G I = X Ll (t, - te) € X Tj}, where
Ti,...,T, are non-degenerate intervals and

Vtr ot (@15 2n) = (97 (g1(21) + Bi(t1)), -, 97 (gn(mn) + Bultn)))  (L1)
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for (z1,...,2,) € X_1 L), (t1,...,tn) € X—1 Tj, where g;: I; — R are continuous
bijections and §;: T; — R for j € {1,...,n}. This family contains a wide class of
transformations that can be converted into shift transformations (see [2]| for suitable
examples). It is also remarkable that transformations of the form (1.1) commute, i.e.

n
V(trsitn) © Vstrssn) = V(s1ressn) © Vt1sostn) 10T (81,5 8n), (1,0, tn) € >< T;.
j=1

The following results deriving the forms of multivariate utility functions invariant
with respect to a family of transformations {v(, .1\l (t1,...,tn) € Xj—; Tj} given
by (1.1) has been proved in [2].

Theorem 1.1. Assume that I1,..., I, and Ty, ..., T, are non-degenerated intervals,
gi + I = R for j € {1,...,n} are continuous bijections and B; : T; — R for
Jj €{1,...,n} are nonconstant continuous functions. A continuous multivariate utility
function U : X;;:1 I; — R is invariant with respect to a family of transformations
Wtrseti) | (t1s s tn) € XG21 Ty} of the form (1.1) if and only if either

U(z1,...,2n) = chgj(xj) +c for (z1,...,2,) € ><Ij
j=1

=1
with some ¢,c1,...,c, € R, or
n n
U(xl,...,xn):aHecjgf(wj)—l-c for (ml,...,xn)€><lj
j=1 j=1
with some a,c,cy,...,c, € R.

In the above result it is explicitly stated that the functions 5, for j € {1,...,n}
are nonconstant, which implies that 3;(7}) for j € {1,...,n} are intervals of positive
length. Such an assumption is widely used in utility theory, since otherwise, the func-
tional form of the utility would not be derived and the work would have no motivation
in utility theory. More precisely, utility functions invariant with respect to a single
value of parameter may depend on arbitrary periodic functions. Such solutions of the
invariance problem are not really useful for utility theory because they do not help to
identify the utility function. Nevertheless, the question concerning periodic solutions
of the problem could be considered as the interesting one from the mathematical point
of view. In fact the periodicity result for fixed constants was discussed by A.E. Abbas
[1] in a univariate case and by A.E. Abbas and J. Aczél [3] in a multivariate case. In
both papers the nonconstant cases have been considered as well.

In this paper we explore the case where some of the functions 3; are constant. We
determine all continuous utility functions U : X?:l I; — R invariant with respect to
a family of transformations {7, ...\l (t1,--.,tn) € X7_1 T;} of the form (1.1) under
the following assumption:

(A) ©,...,I, and Ti,...,T, are non-degenerate intervals, g; : I; — R for j €
{1,...,n} are continuous bijections, 8; : T; = R for j € {1,...,m} (1 <m < n)
are constant, say §; = 0; for j € {1,...,m} with some ¢; € R, and functions
B : T; = R for j € {m+1,...,n} (if any) are nonconstant and continuous.
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Our main result reads as follows.

Theorem 1.2. A continuous utility function U : X7_; I; — R is invariant with
respect to a family of transformations {7y, ..+l (t1, ... tn) € Xj_1 Ty} of the form
(1.1) satisfying (A) if and only if there exists a function p : R™ — R satisfying
condition

n
p(x1+ 01, T+ O0m) =p(T1, .- T)  for (z1,...,%Tm) € ><Ij (1.2)
j=1
(that is a (01, ..., 0m)-periodic function) such that either

U1, omn) = 3 ¢i05(x5) + (91 (@1), -, gm(zm)) for (@, an) € X I
j=1 j=1
(1.3)
with some c1,...,¢cp, € R, or

U(zyy...,zn) =p(g1(21), .oy gm(Tm)) H 9 (5) 4 ¢ for (T1,...,2pn) € ><Ij
j=1 j=1

(1.4)
with some ¢,cq1,...,c, € R.

2. PROOF OF THEOREM 1.2

According to the fundamental property of utility functions, two such functions U and
V represent the same preference relation over lotteries if and only if U = kV + [ for
some k € (0,00) and [ € R. Hence, a utility function U : X’/_; I; — R is invariant
with respect to a family T' if and only if for every (¢1,...,t,) € ><?:1 T; there exist
E(ti,...,tn) € (0,00) and I(ty,...,t,) € R such that

Ulgy '(g1(x1) +61), -, 90 (g

Y gm(@m) + 0m)s g1 (Gms1 (@ms1) + Brmg1 (Emg1))s
.. ,g;l(gn(xn) + Bn(tn))) =

E(t1, ... tn)U(1, .. xn) + Uty ... tn)
(2.1)
for (x1,...,2z,) € R™.

A straightforward calculation shows that if U is of the form (1.3), then (2.1)
holds with k(ty,...,tn) = 1 and I(tr,...,tn) = Y70, ;05 + 30 ¢;B5(t;) for
(t1,.. . tn) € Xj—; Tj (we adopt the convention 7 ., = 0). In the case of (1.4),
we get (2.1) with k(t,...,tn) = [[72y €% [Tj_,,4q 9% ) and i(ty,... 1) =
= (1l = k(t1,...,t,)) for (t1,...,t,) € Xj_; Ty (where [[}_, ., =1). Therefore, if
U is of the form (1.3) or (1.4) with p satisfying (1.2), then U is invariant with respect
to I

Assume that a utility function U is invariant with respect to the family of trans-
formations I'. Then (2.1) holds with some functions k& : X7_;T; — (0,00) and
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l:X_1T; — R. Inserting into (2.1) gj_l(xj) in the place of z; for j € {1,...,n} and
taking

F(z1,...,2,) = U(gl_l(zl), . ,g;l(zn)) for (z1,...,2,) € R™, (2.2)
we obtain

F(Il + 613 sy T+ 6m7xm+1 + 6m+1(tm+1)7 ce Xt 6n<tn)) =

= k(tla cee 7tn)F(x17 cee 7xn) +l(t17‘ B 7tn)
(2.3)

for (z1,...,2,) €ER™, (t1,...,ts) € ><Tj.
=1

If m = n, then (2.3) becomes
F(z1+01,...,&n +0n) = kF(x1,...,25) +1 for (z1,...,2,) € R", (2.4)

where k := k(t1,...,t,) and [ := l(t1,...,t,) with a fixed (t1,...,t,) € Xj_; 1. If
k =1, then taking cq,...,c, € R with 2?21 c;j6; =l and p: R™ — R of the form

p(xh...,xn):F(xh...,xn)—chxj for (x1,...,z,) € R", (2.5)
j=1

making use of (2.4), we obtain (1.2). Furthermore, from (2.2) and (2.5) it follows
(1.3). If k # 1, then taking ¢y, ..., ¢, € R such that Z?:l cjoj =Inkandp:R"” = R
of the form

l n .
p(xl,...,xn):(F(xl,...,mn)—H)e—EFlcﬂ:j for (x1,...,2,) € R",

in view of (2.4), we get (1.2). So, taking into account (2.2), we obtain (1.4) with

Now, assume that m < n. If F' is constant then, in view of (2.2), we get (1.4) with
p = 0. Assume that F' is nonconstant. Fix (¢3,...,t5,) € R™ and put

Ftmins o otn) = K5, oy tmatsootn) for (tmprsoootn) € X T

and

n
b1y tn) =1ttty ootn) for (bmgr,oita) € XK T,
j=m+1

Then, by (2.3), we get

F(ml + 51;;' 5 Tm + 5maxm+1 + ﬁm+1(tm+~1)7 ceey Xy F ﬂn(tn)) =

2.6
:k(tm+1,...,tn)F(l‘l,...,.’I}n)—|—l(tm+1,...,tn) ( )
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for ([Eh A 71‘n) S Rn, (tm+17 - 7tn) S X?=m+1 Tj.
As F is nonconstant, taking (x1,...,2,), (Y1,...,Yn) € R™ with F(x1,...,2,) #
F(y1,...,Yn), in view of (2.6), we obtain

Ftmits - otn) = K(Bpyi(bmi1)s - Bultn)) for  (tmyr, o ta) € X T,

j=m+1
2.7)
where
K(Z 2 )7 F(xl+517~..7xm+5m;xm+1+Zm+1,...,xn—|—zn)7
m+1ls--+y”n) = F(J,‘l,...7.’1;‘n)—F(yl,...,yn)
_F(yl+61,“.,ym+6m’ym+l+zm+1""7yn+z7l) for (Z +1 z )GR”—nL

F(Ilr"azn)7F(y17"'ayn)

Furthermore, from (2.6) and (2.7), we deduce that

i(tm+la~~~vtn):L(ﬂerl(thrl)v"-,ﬁn(tn)) for (thrlv"'atn)e >< Tja

j=m+1
(2.8)
where
L(Zm+1, e ,Zn) e F(Il + 01,0, T + 5m,$m+1 + Zm41, .-, T + Zn)—
- K(Zm+17 RS Zn)F(mla cee axn) for (Zerlv cee ,Zn) e R™™
with a fixed (21,...,2,) € R™.
Now, (2.6)—(2.8) imply that
F(x1+617~-~7xm+6maxm+l +zm+1a-~-7xn+zn) =
= K(Zm+1a cee ,Zn)F($1, cee ,Z'n) + L(Zm+17 cee ,Zn)
; (2.9)
for (z1,...,2n) €R™,  (Zmy1,..-,2n) € >< B (T5).
j=m+1
Given x = (x1,...,2m) € R™, put
Fyx(Umeg1y -y un) = Flz1401, ..., Tm+0m, Ums1, -« - un) for (Ume,. .., up) €R?™™
(2.10)
and
Gx(um+1a s 7un) = F(xh vy Ty Um41y - - 7u’n) for (um+17 cee 7u’n) eR™™.
(2.11)
Then, in view of (2.9), for every x € R™, we obtain
Fy(Zmi1+2mtty s Tnt2n) = K(Zma1, -« 2n)Gx(Tma1, -« o Tn) F L(Zma1,y - - -5 20)
(2.12)

for (Tmi1y.-y2n) ER™ (Zmi1,--.,2n) € X;-L:m+1 B;(Tj).
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In particular, (2.12) holds for every (m+1,...,2Zn) € R" ™ and (2m+1,-..,2n) €
X g1 int B;(Ty). Since B; for j € {m + 1,...,n} are nonconstant continuous
functions and T; for j € {m + 1,...,n} are non-degenerate intervals, the set

RP=™ x X?:m 41int B;(Tj) is nonempty, open and connected. Thus, applying [6,
Theorem 1 and Proposition 2], we conclude that, for every x € R™, one of the follow-
ing three possibilities holds:

(i)

(iii)

there exist cx, dx € R such that Fy = dyx, Gx = ¢cx and

n

L(zmt1y- -y 2n) = dx — cxK(zZm+1, -« -y 2n) for (zmg1,...,2n) € >< int B;(T});
j=m+1
(2.13
there exist a nonzero additive function Ax : R*™™ — R (that is Ax(u + v) =
Ax(u) + Ax(v) for u,v € R"™™), by, cx € R and dx € R\ {0} such that

Fe(@mi1y - s @n) = Ax(@miyt1, oo, Tn) +0x + e for  (Tmy1,...,2,) € RTT™
(2.14)
1
Gx(Tmity .., &n) = d—(Ax(:EmH, ceyZpn) Fex) for (Tpmgt,...,xn) €RPTTY
) (2.15)
K(zmi1,---520) = dx for (zmyr,.za)€ X int B(T5), (2.16)
Jj=m+1

L(Zm-‘rh ) Zn) = Ax(zm-i-la SRR) Zn) + bx for (Zm-i-l, s ,Zn) € >< int Bj(Tj)§
Jj=m+1
(2.17)
there exist a nonconstant exponential function Ey : R"™™ — R (that is
Ex(u+v) = Ex(u)Ex(v) for u,v € R"™™), ay, bx € R\ {0} and ¢, dx € R
such that

Fx(xm+1a ey xn) = axbex(xm+la s 7xn) + dx for (xm+1a s 7xn) € Rnima
Gx(Tma1y -5 Tn) = bx Ex(Tpma1, -, Tn) + e for  (Tpmyr1,...,x,) € RPT™
(2.18)
K(Zm+1a AR Zn) = axEx(Zm+1a AR Zn) for (Zm+1a ceey Zn) € >< int ﬁj(Tj)v
j=m+1
(2.19)
L(zmt1y---y2n) =
" 2.20
= —axCxEx(Zm+1, -+, 2n) +dx for (zimyq1,...,2n) € >< int 5;(T3). (2:20)
j=m-+1

Note that if, for some x € R™, (i) or (iii) holds, then

n

L(zmt1y- -y 2n) ¥ cxK(Zmt1y- -+, 2n) =dx  for (zmi1,...,2n) € >< int 8;(T3).

j=m+1
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Thus, if also (ii) is valid for some y € R™, we have
dx = L(Zm41,- - 2n) + K (Zmi1, - 2n) = Ay(Zm+1, -5 2n) + by + cxdy

for (zm+1,--+52n) € Xy tB;(T5).

Since A, is a nonconstant function, this means that either (ii) holds for every
x € R™ or, for every x € R™, one of the conditions (i), (iii) holds. Therefore the
following three cases are possible:

1. (i) holds for every x € R™,
2. (ii) holds for every x € R™,
3. (iil) holds for some x, € R™.

Case 1. Since F is nonconstant, making use of (2.11), we have
Glarram) @Tmgts @) =F (21,0 20) ZF W1, Un) =Gy oy Ums s - YUn)

for some (21,...,2n), (Y1,.--,yn) € R", whence ciz, . 2..) # C(ys,....ym)- Moreover,
according to (2.13), we have

d(xl,...,acm) - C(arl,...,;cm)K(Zanl, ey Zn) = d(yl,...,ym) - C(yl,...,ym)K('zm+1a ceey Zn)
for (zmy1,. .+, 2n) € X4y int B5(Tj).
Thus
Aoy, o) ~ Ayreosym) o
K(Zmity-oey2n) = : for (Zm+1,---,4n) € >< int 8;(Ty).
C(zl ..... Tom) c(yl s Ym) j=m+1

Hence K is constant and, in view of (2.13), so is L. Furthermore, by (2.11), we get

F(ry,...,2n) = Gy oz (@mg1s - Tn) = Clay, oz for (21,00, 20) € R™.
(2.21)
Therefore, taking into account (2.9), we obtain

Cla1481, e Tm+0m) = Kc(acl,“.,:rm) + L for (.131, - ,l‘m) € R™,

So, arguing as in the case of (2.4), we conclude that either K = 1 and
Clorrm) = Z c;jx; +p(x1,..., ) for (x1,...,z,)€R™
j=1

with some ¢1,...,¢, € R and p: R™ — R satisfying (1.2), or K # 1 and
ST sy L m
c(xl _____ zm):p(xl’_.,7xm)e j=1%7 J+ﬁ for (.’L‘h...,!Em)ER

with some c1,...,¢, € Rand p: R™ — R satisfying (1.2). Thus, in view of (2.2) and
(2.21), we get (1.3) and (1.4), respectively with ¢; = 0 for j € {m +1,...,n} and
in the second case.

_ L
C=1§k
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Case 2. From (2.16) it follows that d := dx = dy for x,y € R™. Furthermore, by
(2.17), for every x,y € R™, we have

n

Ax(Zmg1s- - 2n) +bx = Ay(Zmi1, -+ 2n) + by for (Zmg1,...,2n) € >< int (7).
j=m+1

Thus, as X_,, 1 int 8;(T}) is a nonempty open set, for every x,y € R™, we get
A=Ay = Ay and b := by = by (cf. [7, p. 328]). So, making use of (2.14) and (2.15),
for every x € R™, we obtain

Fe(@mi1y - s @n) = A[@ma1, -, &n) +b+cx for (Tmi1,...,2,) € RPT™ (2.22)

and
1
Gx(Tms1y -y Ty) = g(A(Im+1a o p)tex) for (Tgg1,...,x,) € R (2.23)
Hence, in view of (2.10) and (2.11), we get
1
g(A(xm+1a cee 7xn) + C(.’E1+51,...,mm+6m)) = G(m1+61,...,mm+6m)(l.m+1a cee ;xn) =
= F(xl + 517 ces T+ (Sma Tm+1y--- 71'77,) = F(:vl,...,:cm)('rerh s 7'Tn) =
=A@my1s- 5 2n) F O+ Clay,py for (x1,...,2,) € R™
Therefore

1

1
(8 — 1)A(xm+1, e T) = Clayzn) JCE O T+ ) +b for (zy1,...,z,) € R™.

Since A is nonconstant and the right hand side of the latter equality does not depend
on (Ty+1,---,Ty), this means that d = 1 and

Clar41,smt0m) = Clar,oam) T 0 for (z1,...,2,) € R™. (2.24)

Let ¢1,...,¢y € R be such that Z;n:l c;j6; = b and let p : R™ — R be given by

m

P(T1, . ) = Clay,mn) — Z cjz; for (x1,...,zm) € R™. (2.25)

j=1

Then, in view of (2.24), p satisfies (1.2). Furthermore, as U is continuous, for every
x € R, so is Fx. Thus, by (2.22), A is continuous, whence (cf. [7, p. 130]) there exist
Cm+1, - - -+ Cn € R such that

n
A(Tmt1ye ey Tn) = Z c;jx; for (Tmgr,...,2n) € R
j=m+1

Therefore, since d = 1, taking into account (2.11), (2.23) and (2.25), we obtain

F(zy,...,24,) :chxj +p(z1,... xm) for (z1,...,2,) € R™
j=1
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Hence, in view of (2.2), U is of the form (1.3).

Case 3. Let S(j), (i) and Sgj) denote the sets of all elements of R™ for which (i), (ii)
and (iii) is valid, respectively. Then, as we have already noted, in this case S;) = 0.
Hence Sy U S(iii) = R™. Since x, € S(iii), according to (2.19) and (2.20), we get

n

K(Zm—O—la"'vZn):aE(Zm—Ha---»Zn) for (Zm—l-lv"'azn)e >< intﬂj(Tj)

j=m+1
(2.26)
and
n
L(zmt1,--+y2n) = —acE(zmy1,- -y 2n) +d for (zmy1,...,2n) € >< int B;(T}),
j=m+1
(2.27)
where E := E,_, a := a,,, ¢ := ¢, and d := d,_ . Moreover, in view of (2.2) and

(2.11), the continuity of U and gy41, . - -, gn implies the continuity of G« for x € R™.
Thus, as ax # 0 for x € R™, from (2.18) it follows that, for every x € R™, Ey is
continuous. In particular E is continuous and nonconstant, so (cf. [7, p. 311])

E(Xmat, - Tn) = e2j=m+1 %% for (Trmt1s.-. Tn) ERPTT (2.28)

with some ¢ 41, - - ., ¢, € Rsuch that Z;L:mﬂ c? > 0. Furthermore, in view of (2.13),

(2.19), (2.20), (2.26) and (2.27), for every x € R™, we have
dy = L(Zm+1a sy Zn) + cxK(Zm—O—la sy Zn) = a(cx - C)E(Zm+17 cees Zn) +d

for (zm+1,.--52n) € X ppqq int B;(T}), that is

alex — O)E(Zmi1,y .-+ 2n) =dx —d for (zmi1,...,2n) € >< int B;(Ty).
Jj=m+1

Since F is nonconstant and a # 0, this means that, for every x € R™, we get cx = ¢
and dx = d. Therefore, taking into account (2.11), (2.18) and (2.28), we obtain

F(z1,....20) = Gay,z0) (@Tmag1s -, T0) = Bz, . ... 7xm)627:m+1 % 4 ¢ (2.29)

for (x1,...,2,) € R, where

B( ) bay,....w,) Whenever (z1,...,2m) € S,
T1yens Typ) =
! " 0 whenever (z1,...,2m) € Sg).

Consequently, making use of (2.9), (2.26), (2.27) and (2.29), we conclude that
e j=mt1 cf(“JrZi)(B(xl + 81,y 4+ 0m) —aB(21,...,2,)) =d—c¢

for (z1,...,2n) €R™, (2m+1,---,2n) € Xy int 55 (T5).
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As 30 41 ¢i > 0, this implies that d = ¢ and

B(z1401,...,&m +0m) = aB(x1,...,2m) for (z1,...,2,) € R™.
Thus
By, ..., xm) = p(1, ..., xm)e=i=1%%  for (zq,...,2m,) € R™ (2.30)

with some ¢1,...,¢, € R and p : R™ — R satisfying (1.2). In fact, if a = 1 then
(2.30) holds with ¢; = 0 for j € {1,...,m} and p := B. If a # 1 then it is enough to
take ¢q,..., ¢, € R such that Z;n:l ¢;j6; =Ina and p : R™ — R of the form

p(scl,...wm):B(ml,...,xm)efzg’ilwﬂ' for (x1,...,2m) € R™.

Finally, from (2.2), (2.29) and (2.30), it follows (1.4).

3. CONCLUSION

In a recent paper [2] A.E. Abbas determined multivariate utility functions invariant
with respect to a family of transformations of the form (1.1) under the assumption
that B1,..., B, are nonconstant functions. This family contains a wide class of trans-
formations that can be converted into shift transformations. In our work we have
considered the case where some of the functions fi,..., 3, are constant. We have
proved that in such a case the invariant utility functions contain the periodic com-
ponents, depending in fact on an arbitrary function. Therefore a class of all utility
functions invariant with respect to the family of such transformations substantially
differs from that obtained in [2]. Results of this type have been already discussed in
[1] and [3] in a univariate and a multivariate case, respectively. It is known that, as
the presented solutions depend on arbitrary periodic functions, they are not really
useful for utility theorists. Nevertheless, one can consider them as interesting from
the mathematical point of view.
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