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1. INTRODUCTION

A fundamental step in decision analysis is the construction of a utility function
representing a preference relation over lotteries. There are several approaches to
this problem. One of them is based on the notion of invariance of a utility func-
tion. The notion has been introduced by Pfanzagl [8] and developed in [1–5]. Let
us recall that a utility function U is invariant with respect to a family transfor-
mations Γ provided that, for every member γ of Γ, U and U ◦ γ represent the
same preference relation over lotteries. Since every utility function over lotteries
is uniquely determined by its values on a set of degenerate lotteries and this set
can be identified with the set of outcomes, it is enough to consider the problem
of invariance on the set of all outcomes. Recently, Abbas [2] extended the notion
of invariance onto multivariate utility functions. One of the main problems con-
sidered in [2] concerns n-attribute utility functions defined on a Cartesian product�n
j=1 Ij of non-degenerate intervals I1, . . . , In and invariant with respect to a fam-

ily of transformations
{
γ(t1,...,tn) :

�n
j=1 Ij →

�n
j=1 Ij | (t1, . . . , tn) ∈

�n
j=1 Tj

}
, where

T1, . . . , Tn are non-degenerate intervals and

γ(t1,...,tn)(x1, . . . , xn) = (g−1
1 (g1(x1) + β1(t1)), . . . , g−1

n (gn(xn) + βn(tn))) (1.1)
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for (x1, . . . , xn) ∈
�n
j=1 Ij , (t1, . . . , tn) ∈

�n
j=1 Tj , where gj : Ij → R are continuous

bijections and βj : Tj → R for j ∈ {1, . . . , n}. This family contains a wide class of
transformations that can be converted into shift transformations (see [2] for suitable
examples). It is also remarkable that transformations of the form (1.1) commute, i.e.

γ(t1,...,tn) ◦ γ(s1,...,sn) = γ(s1,...,sn) ◦ γ(t1,...,tn) for (s1, . . . , sn), (t1, . . . , tn) ∈
n�
j=1

Tj .

The following results deriving the forms of multivariate utility functions invariant
with respect to a family of transformations {γ(t1,...,tn)| (t1, . . . , tn) ∈

�n
j=1 Tj} given

by (1.1) has been proved in [2].

Theorem 1.1. Assume that I1, . . . , In and T1, . . . , Tn are non-degenerated intervals,
gj : Ij → R for j ∈ {1, . . . , n} are continuous bijections and βj : Tj → R for
j ∈ {1, . . . , n} are nonconstant continuous functions. A continuous multivariate utility
function U :

�n
j=1 Ij → R is invariant with respect to a family of transformations

{γ(t1,...,tn)|(t1, . . . , tn) ∈
�n
j=1 Tj} of the form (1.1) if and only if either

U(x1, . . . , xn) =

n∑
j=1

cjgj(xj) + c for (x1, . . . , xn) ∈
n�
j=1

Ij

with some c, c1, . . . , cn ∈ R, or

U(x1, . . . , xn) = a

n∏
j=1

ecjgj(xj) + c for (x1, . . . , xn) ∈
n�
j=1

Ij

with some a, c, c1, . . . , cn ∈ R.

In the above result it is explicitly stated that the functions βj for j ∈ {1, . . . , n}
are nonconstant, which implies that βj(Tj) for j ∈ {1, . . . , n} are intervals of positive
length. Such an assumption is widely used in utility theory, since otherwise, the func-
tional form of the utility would not be derived and the work would have no motivation
in utility theory. More precisely, utility functions invariant with respect to a single
value of parameter may depend on arbitrary periodic functions. Such solutions of the
invariance problem are not really useful for utility theory because they do not help to
identify the utility function. Nevertheless, the question concerning periodic solutions
of the problem could be considered as the interesting one from the mathematical point
of view. In fact the periodicity result for fixed constants was discussed by A.E. Abbas
[1] in a univariate case and by A.E. Abbas and J. Aczél [3] in a multivariate case. In
both papers the nonconstant cases have been considered as well.

In this paper we explore the case where some of the functions βj are constant. We
determine all continuous utility functions U :

�n
j=1 Ij → R invariant with respect to

a family of transformations {γ(t1,...,tn)| (t1, . . . , tn) ∈
�n
j=1 Tj} of the form (1.1) under

the following assumption:

(A) I1, . . . , In and T1, . . . , Tn are non-degenerate intervals, gj : Ij → R for j ∈
{1, . . . , n} are continuous bijections, βj : Tj → R for j ∈ {1, . . . ,m} (1 ≤ m ≤ n)
are constant, say βj ≡ δj for j ∈ {1, . . . ,m} with some δj ∈ R, and functions
βj : Tj → R for j ∈ {m+ 1, . . . , n} (if any) are nonconstant and continuous.
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Our main result reads as follows.

Theorem 1.2. A continuous utility function U :
�n
j=1 Ij → R is invariant with

respect to a family of transformations {γ(t1,...,tn)| (t1, . . . , tn) ∈
�n
j=1 Tj} of the form

(1.1) satisfying (A) if and only if there exists a function p : Rm → R satisfying
condition

p(x1 + δ1, . . . , xm + δm) = p(x1, . . . , xm) for (x1, . . . , xm) ∈
n�
j=1

Ij (1.2)

(that is a (δ1, . . . , δm)-periodic function) such that either

U(x1, . . . , xn) =

n∑
j=1

cjgj(xj) + p(g1(x1), . . . , gm(xm)) for (x1, . . . , xn) ∈
n�
j=1

Ij

(1.3)
with some c1, . . . , cn ∈ R, or

U(x1, . . . , xn) = p(g1(x1), . . . , gm(xm))

n∏
j=1

ecjgj(xj) + c for (x1, . . . , xn) ∈
n�
j=1

Ij

(1.4)
with some c, c1, . . . , cn ∈ R.

2. PROOF OF THEOREM 1.2

According to the fundamental property of utility functions, two such functions U and
V represent the same preference relation over lotteries if and only if U = kV + l for
some k ∈ (0,∞) and l ∈ R. Hence, a utility function U :

�n
j=1 Ij → R is invariant

with respect to a family Γ if and only if for every (t1, . . . , tn) ∈
�n
j=1 Tj there exist

k(t1, . . . , tn) ∈ (0,∞) and l(t1, . . . , tn) ∈ R such that

U(g−1
1 (g1(x1) + δ1), . . . , g−1

m (gm(xm) + δm), g−1
m+1(gm+1(xm+1) + βm+1(tm+1)),

. . . , g−1
n (gn(xn) + βn(tn))) = k(t1, . . . , tn)U(x1, . . . , xn) + l(t1, . . . , tn)

(2.1)
for (x1, . . . , xn) ∈ Rn.

A straightforward calculation shows that if U is of the form (1.3), then (2.1)
holds with k(t1, . . . , tn) = 1 and l(t1, . . . , tn) =

∑m
j=1 cjδj +

∑n
j=m+1 cjβj(tj) for

(t1, . . . , tn) ∈
�n
j=1 Tj (we adopt the convention

∑n
j=n+1 = 0). In the case of (1.4),

we get (2.1) with k(t1, . . . , tn) =
∏m
j=1 e

cjδj
∏n
j=m+1 e

cjβj(tj) and l(t1, . . . , tn) =

= c(1 − k(t1, . . . , tn)) for (t1, . . . , tn) ∈
�n
j=1 Tj (where

∏n
j=n+1=1). Therefore, if

U is of the form (1.3) or (1.4) with p satisfying (1.2), then U is invariant with respect
to Γ.

Assume that a utility function U is invariant with respect to the family of trans-
formations Γ. Then (2.1) holds with some functions k :

�n
j=1 Tj → (0,∞) and
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l :
�n
j=1 Tj → R. Inserting into (2.1) g−1

j (xj) in the place of xj for j ∈ {1, . . . , n} and
taking

F (z1, . . . , zn) = U(g−1
1 (z1), . . . , g−1

n (zn)) for (z1, . . . , zn) ∈ Rn, (2.2)

we obtain

F (x1 + δ1, . . . , xm + δm, xm+1 + βm+1(tm+1), . . . , xn + βn(tn)) =

= k(t1, . . . , tn)F (x1, . . . , xn) + l(t1, . . . , tn)

for (x1, . . . , xn) ∈ Rn, (t1, . . . , tn) ∈
n�
j=1

Tj .

(2.3)

If m = n, then (2.3) becomes

F (x1 + δ1, . . . , xn + δn) = kF (x1, . . . , xn) + l for (x1, . . . , xn) ∈ Rn, (2.4)

where k := k(t1, . . . , tn) and l := l(t1, . . . , tn) with a fixed (t1, . . . , tn) ∈
�n
j=1 Tj . If

k = 1, then taking c1, . . . , cn ∈ R with
∑n
j=1 cjδj = l and p : Rn → R of the form

p(x1, . . . , xn) = F (x1, . . . , xn)−
n∑
j=1

cjxj for (x1, . . . , xn) ∈ Rn, (2.5)

making use of (2.4), we obtain (1.2). Furthermore, from (2.2) and (2.5) it follows
(1.3). If k 6= 1, then taking c1, . . . , cn ∈ R such that

∑n
j=1 cjδj = ln k and p : Rn → R

of the form

p(x1, . . . , xn) =

(
F (x1, . . . , xn)− l

1− k

)
e−

∑n
j=1 cjxj for (x1, . . . , xn) ∈ Rn,

in view of (2.4), we get (1.2). So, taking into account (2.2), we obtain (1.4) with
c := l

1−k .

Now, assume that m < n. If F is constant then, in view of (2.2), we get (1.4) with
p ≡ 0. Assume that F is nonconstant. Fix (t◦1, . . . , t

◦
m) ∈ Rm and put

k̃(tm+1, . . . , tn) = k(t◦1, . . . , t
◦
m, tm+1, . . . , tn) for (tm+1, . . . , tn) ∈

n�
j=m+1

Tj

and

l̃(tm+1, . . . , tn) = l(t◦1, . . . , t
◦
m, tm+1, . . . , tn) for (tm+1, . . . , tn) ∈

n�
j=m+1

Tj .

Then, by (2.3), we get

F (x1 + δ1, . . . , xm + δm, xm+1 + βm+1(tm+1), . . . , xn + βn(tn)) =

= k̃(tm+1, . . . , tn)F (x1, . . . , xn) + l̃(tm+1, . . . , tn)
(2.6)
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for (x1, . . . , xn) ∈ Rn, (tm+1, . . . , tn) ∈
�n
j=m+1 Tj .

As F is nonconstant, taking (x1, . . . , xn), (y1, . . . , yn) ∈ Rn with F (x1, . . . , xn) 6=
F (y1, . . . , yn), in view of (2.6), we obtain

k̃(tm+1, . . . , tn) = K(βm+1(tm+1), . . . , βn(tn)) for (tm+1, . . . , tn) ∈
n�

j=m+1

Tj ,

(2.7)
where

K(zm+1, . . . , zn) =
F (x1 + δ1, . . . , xm + δm, xm+1 + zm+1, . . . , xn + zn)

F (x1, . . . , xn)− F (y1, . . . , yn)
−

− F (y1 + δ1, . . . , ym + δm, ym+1 + zm+1, . . . , yn + zn)

F (x1, . . . , xn)− F (y1, . . . , yn)
for (zm+1, . . . , zn) ∈ Rn−m.

Furthermore, from (2.6) and (2.7), we deduce that

l̃(tm+1, . . . , tn) = L(βm+1(tm+1), . . . , βn(tn)) for (tm+1, . . . , tn) ∈
n�

j=m+1

Tj ,

(2.8)
where

L(zm+1, . . . , zn) = F (x1 + δ1, . . . , xm + δm, xm+1 + zm+1, . . . , xn + zn)−
−K(zm+1, . . . , zn)F (x1, . . . , xn) for (zm+1, . . . , zn) ∈ Rn−m

with a fixed (x1, . . . , xn) ∈ Rn.
Now, (2.6)–(2.8) imply that

F (x1 + δ1, . . . , xm + δm, xm+1 + zm+1, . . . , xn + zn) =

= K(zm+1, . . . , zn)F (x1, . . . , xn) + L(zm+1, . . . , zn)

for (x1, . . . , xn) ∈ Rn, (zm+1, . . . , zn) ∈
n�

j=m+1

βj(Tj).

(2.9)

Given x = (x1, . . . , xm) ∈ Rm, put

Fx(um+1, . . . , un) := F (x1+δ1, . . . , xm+δm, um+1, . . . , un) for (um+1, . . . , un)∈Rn−m
(2.10)

and

Gx(um+1, . . . , un) := F (x1, . . . , xm, um+1, . . . , un) for (um+1, . . . , un) ∈ Rn−m.
(2.11)

Then, in view of (2.9), for every x ∈ Rm, we obtain

Fx(xm+1+zm+1, . . . , xn+zn) = K(zm+1, . . . , zn)Gx(xm+1, . . . , xn)+L(zm+1, . . . , zn)
(2.12)

for (xm+1, . . . , xn) ∈ Rn−m, (zm+1, . . . , zn) ∈
�n
j=m+1 βj(Tj).
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In particular, (2.12) holds for every (xm+1, . . . , xn) ∈ Rn−m and (zm+1, . . . , zn) ∈�n
j=m+1 intβj(Tj). Since βj for j ∈ {m + 1, . . . , n} are nonconstant continuous

functions and Tj for j ∈ {m + 1, . . . , n} are non-degenerate intervals, the set
Rn−m ×

�n
j=m+1 int βj(Tj) is nonempty, open and connected. Thus, applying [6,

Theorem 1 and Proposition 2], we conclude that, for every x ∈ Rm, one of the follow-
ing three possibilities holds:

(i) there exist cx, dx ∈ R such that Fx ≡ dx, Gx ≡ cx and

L(zm+1, . . . , zn) = dx − cxK(zm+1, . . . , zn) for (zm+1, . . . , zn)∈
n�

j=m+1

int βj(Tj);

(2.13)
(ii) there exist a nonzero additive function Ax : Rn−m → R (that is Ax(u + v) =

Ax(u) +Ax(v) for u, v ∈ Rn−m), bx, cx ∈ R and dx ∈ R \ {0} such that

Fx(xm+1, . . . , xn) = Ax(xm+1, . . . , xn) + bx + cx for (xm+1, . . . , xn) ∈ Rn−m,
(2.14)

Gx(xm+1, . . . , xn) =
1

dx
(Ax(xm+1, . . . , xn) + cx) for (xm+1, . . . , xn) ∈ Rn−m,

(2.15)

K(zm+1, . . . , zn) = dx for (zm+1, . . . , zn)∈
n�

j=m+1

int βj(Tj), (2.16)

L(zm+1, . . . , zn) = Ax(zm+1, . . . , zn) + bx for (zm+1, . . . , zn)∈
n�

j=m+1

int βj(Tj);

(2.17)
(iii) there exist a nonconstant exponential function Ex : Rn−m → R (that is

Ex(u+ v) = Ex(u)Ex(v) for u, v ∈ Rn−m), ax, bx ∈ R \ {0} and cx, dx ∈ R
such that

Fx(xm+1, . . . , xn) = axbxEx(xm+1, . . . , xn) + dx for (xm+1, . . . , xn) ∈ Rn−m,

Gx(xm+1, . . . , xn) = bxEx(xm+1, . . . , xn) + cx for (xm+1, . . . , xn) ∈ Rn−m,
(2.18)

K(zm+1, . . . , zn) = axEx(zm+1, . . . , zn) for (zm+1, . . . , zn)∈
n�

j=m+1

int βj(Tj),

(2.19)
L(zm+1, . . . , zn) =

= −axcxEx(zm+1, . . . , zn) + dx for (zm+1, . . . , zn)∈
n�

j=m+1

int βj(Tj).
(2.20)

Note that if, for some x ∈ Rm, (i) or (iii) holds, then

L(zm+1, . . . , zn) + cxK(zm+1, . . . , zn) = dx for (zm+1, . . . , zn) ∈
n�

j=m+1

int βj(Tj).
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Thus, if also (ii) is valid for some y ∈ Rm, we have

dx = L(zm+1, . . . , zn) + cxK(zm+1, . . . , zn) = Ay(zm+1, . . . , zn) + by + cxdy

for (zm+1, . . . , zn) ∈
�n
j=m+1 intβj(Tj).

Since Ay is a nonconstant function, this means that either (ii) holds for every
x ∈ Rm or, for every x ∈ Rm, one of the conditions (i), (iii) holds. Therefore the
following three cases are possible:

1. (i) holds for every x ∈ Rm,
2. (ii) holds for every x ∈ Rm,
3. (iii) holds for some x◦ ∈ Rm.

Case 1. Since F is nonconstant, making use of (2.11), we have

G(x1,...,xm)(xm+1, . . . , xn)=F (x1, . . . , xn) 6=F (y1, . . . , yn)=G(y1,...,ym)(ym+1, . . . , yn)

for some (x1, . . . , xn), (y1, . . . , yn) ∈ Rn, whence c(x1,...,xm) 6= c(y1,...,ym). Moreover,
according to (2.13), we have

d(x1,...,xm) − c(x1,...,xm)K(zm+1, . . . , zn) = d(y1,...,ym) − c(y1,...,ym)K(zm+1, . . . , zn)

for (zm+1, . . . , zn) ∈
�n
j=m+1 int βj(Tj).

Thus

K(zm+1, . . . , zn) =
d(x1,...,xm) − d(y1,...,ym)

c(x1,...,xm) − c(y1,...,ym)
for (zm+1, . . . , zn) ∈

n�
j=m+1

int βj(Tj).

Hence K is constant and, in view of (2.13), so is L. Furthermore, by (2.11), we get

F (x1, . . . , xn) = G(x1,...,xm)(xm+1, . . . , xn) = c(x1,...,xm) for (x1, . . . , xm) ∈ Rm.
(2.21)

Therefore, taking into account (2.9), we obtain

c(x1+δ1,...,xm+δm) = Kc(x1,...,xm) + L for (x1, . . . , xm) ∈ Rm.

So, arguing as in the case of (2.4), we conclude that either K = 1 and

c(x1,...,xm) =

m∑
j=1

cjxj + p(x1, . . . , xm) for (x1, . . . , xm) ∈ Rm

with some c1, . . . , cm ∈ R and p : Rm → R satisfying (1.2), or K 6= 1 and

c(x1,...,xm) = p(x1, . . . , xm)e
∑m

j=1 cjxj +
L

1−K
for (x1, . . . , xm) ∈ Rm

with some c1, . . . , cm ∈ R and p : Rm → R satisfying (1.2). Thus, in view of (2.2) and
(2.21), we get (1.3) and (1.4), respectively with cj = 0 for j ∈ {m + 1, . . . , n} and
c = L

1−K in the second case.



462 Jacek Chudziak and Sebastian Wójcik

Case 2. From (2.16) it follows that d := dx = dy for x,y ∈ Rm. Furthermore, by
(2.17), for every x,y ∈ Rm, we have

Ax(zm+1, . . . , zn) + bx = Ay(zm+1, . . . , zn) + by for (zm+1, . . . , zn) ∈
n�

j=m+1

int βj(Tj).

Thus, as
�n
j=m+1 int βj(Tj) is a nonempty open set, for every x,y ∈ Rm, we get

A := Ax = Ay and b := bx = by (cf. [7, p. 328]). So, making use of (2.14) and (2.15),
for every x ∈ Rm, we obtain

Fx(xm+1, . . . , xn) = A(xm+1, . . . , xn) + b+ cx for (xm+1, . . . , xn) ∈ Rn−m (2.22)

and

Gx(xm+1, . . . , xn) =
1

d
(A(xm+1, . . . , xn)+cx) for (xm+1, . . . , xn) ∈ Rn−m. (2.23)

Hence, in view of (2.10) and (2.11), we get

1

d
(A(xm+1, . . . , xn) + c(x1+δ1,...,xm+δm)) = G(x1+δ1,...,xm+δm)(xm+1, . . . , xn) =

= F (x1 + δ1, . . . , xm + δm, xm+1, . . . , xn) = F(x1,...,xm)(xm+1, . . . , xn) =

= A(xm+1, . . . , xn) + b+ c(x1,...,xm) for (x1, . . . , xn) ∈ Rn.

Therefore(1

d
−1
)
A(xm+1, . . . , xn) = c(x1,...,xm)−

1

d
c(x1+δ1,...,xm+δm) +b for (x1, . . . , xn) ∈ Rn.

Since A is nonconstant and the right hand side of the latter equality does not depend
on (xm+1, . . . , xn), this means that d = 1 and

c(x1+δ1,...,xm+δm) = c(x1,...,xm) + b for (x1, . . . , xm) ∈ Rm. (2.24)

Let c1, . . . , cm ∈ R be such that
∑m
j=1 cjδj = b and let p : Rm → R be given by

p(x1, . . . , xm) = c(x1,...,xm) −
m∑
j=1

cjxj for (x1, . . . , xm) ∈ Rm. (2.25)

Then, in view of (2.24), p satisfies (1.2). Furthermore, as U is continuous, for every
x ∈ R, so is Fx. Thus, by (2.22), A is continuous, whence (cf. [7, p. 130]) there exist
cm+1, . . . , cn ∈ R such that

A(xm+1, . . . , xn) =

n∑
j=m+1

cjxj for (xm+1, . . . , xn) ∈ Rn−m.

Therefore, since d = 1, taking into account (2.11), (2.23) and (2.25), we obtain

F (x1, . . . , xn) =

n∑
j=1

cjxj + p(x1, . . . , xm) for (x1, . . . , xn) ∈ Rn.
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Hence, in view of (2.2), U is of the form (1.3).
Case 3. Let S(i), S(ii) and S(iii) denote the sets of all elements of Rm for which (i), (ii)
and (iii) is valid, respectively. Then, as we have already noted, in this case S(ii) = ∅.
Hence S(i) ∪ S(iii) = Rm. Since x◦ ∈ S(iii), according to (2.19) and (2.20), we get

K(zm+1, . . . , zn) = aE(zm+1, . . . , zn) for (zm+1, . . . , zn) ∈
n�

j=m+1

int βj(Tj)

(2.26)
and

L(zm+1, . . . , zn) = −acE(zm+1, . . . , zn) + d for (zm+1, . . . , zn) ∈
n�

j=m+1

int βj(Tj),

(2.27)
where E := Ex◦ , a := ax◦ , c := cx◦ and d := dx◦ . Moreover, in view of (2.2) and
(2.11), the continuity of U and gm+1, . . . , gn implies the continuity of Gx for x ∈ Rm.
Thus, as ax 6= 0 for x ∈ Rm, from (2.18) it follows that, for every x ∈ Rm, Ex is
continuous. In particular E is continuous and nonconstant, so (cf. [7, p. 311])

E(xm+1, . . . , xn) = e
∑n

j=m+1 cjxj for (xm+1, . . . , xn) ∈ Rn−m (2.28)

with some cm+1, . . . , cn ∈ R such that
∑n
j=m+1 c

2
i > 0. Furthermore, in view of (2.13),

(2.19), (2.20), (2.26) and (2.27), for every x ∈ Rm, we have

dx = L(zm+1, . . . , zn) + cxK(zm+1, . . . , zn) = a(cx − c)E(zm+1, . . . , zn) + d

for (zm+1, . . . , zn) ∈
�n
j=m+1 int βj(Tj), that is

a(cx − c)E(zm+1, . . . , zn) = dx − d for (zm+1, . . . , zn) ∈
n�

j=m+1

int βj(Tj).

Since E is nonconstant and a 6= 0, this means that, for every x ∈ Rm, we get cx = c
and dx = d. Therefore, taking into account (2.11), (2.18) and (2.28), we obtain

F (x1, . . . , xn) = G(x1,...,xm)(xm+1, . . . , xn) = B(x1, . . . , xm)e
∑n

j=m+1 cjxj + c (2.29)

for (x1, . . . , xn) ∈ Rn, where

B(x1, . . . , xm) =

{
b(x1,...,xm) whenever (x1, . . . , xm) ∈ S(iii),

0 whenever (x1, . . . , xm) ∈ S(i).

Consequently, making use of (2.9), (2.26), (2.27) and (2.29), we conclude that

e
∑n

j=m+1 ci(xi+zi)(B(x1 + δ1, . . . , xm + δm)− aB(x1, . . . , xm)) = d− c

for (x1, . . . , xn) ∈ Rn, (zm+1, . . . , zn) ∈
�n
j=m+1 int βj(Tj).
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As
∑n
j=m+1 c

2
i > 0, this implies that d = c and

B(x1 + δ1, . . . , xm + δm) = aB(x1, . . . , xm) for (x1, . . . , xm) ∈ Rm.

Thus

B(x1, . . . , xm) = p(x1, . . . , xm)e
∑m

j=1 cjxj for (x1, . . . , xm) ∈ Rm (2.30)

with some c1, . . . , cm ∈ R and p : Rm → R satisfying (1.2). In fact, if a = 1 then
(2.30) holds with cj = 0 for j ∈ {1, . . . ,m} and p := B. If a 6= 1 then it is enough to
take c1, . . . , cm ∈ R such that

∑m
j=1 cjδj = ln a and p : Rm → R of the form

p(x1, . . . , xm) = B(x1, . . . , xm)e−
∑m

j=1 cjxj for (x1, . . . , xm) ∈ Rm.

Finally, from (2.2), (2.29) and (2.30), it follows (1.4).

3. CONCLUSION

In a recent paper [2] A.E. Abbas determined multivariate utility functions invariant
with respect to a family of transformations of the form (1.1) under the assumption
that β1, . . . , βn are nonconstant functions. This family contains a wide class of trans-
formations that can be converted into shift transformations. In our work we have
considered the case where some of the functions β1, . . . , βn are constant. We have
proved that in such a case the invariant utility functions contain the periodic com-
ponents, depending in fact on an arbitrary function. Therefore a class of all utility
functions invariant with respect to the family of such transformations substantially
differs from that obtained in [2]. Results of this type have been already discussed in
[1] and [3] in a univariate and a multivariate case, respectively. It is known that, as
the presented solutions depend on arbitrary periodic functions, they are not really
useful for utility theorists. Nevertheless, one can consider them as interesting from
the mathematical point of view.
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