PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new optimization-based approach for aircraft landing in the presence of windshear

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Communication Papers of the 2017 Federated Conference on Computer Science and Information Systems
Języki publikacji
EN
Abstrakty
EN
In the article a new approach for aircraft landing with the presence of the windshear phenomena was presented. The differential-algebraic model with variability constraints was under considerations. To transform the optimal control problem into a nonlinear optimization task, a modified direct shooting method was used. Then, to solve the obtained large-scale nonlinear optimization problem, a barrier method was applied. Moreover, in the proposed optimization-based approach, the variability constraints imposed on the state trajectory were considered directly.
Rocznik
Tom
Strony
83--88
Opis fizyczny
Bibliogr. 22 poz., wykr.
Twórcy
autor
  • Department of Control Systems and Mechatronics, Wrocław University of Science and Technology, Wybrzeze Wyspiańskiego 27, 50-370, Wrocław, Poland
  • Department of Control Systems and Mechatronics, Wrocław University of Science and Technology, Wybrzeze Wyspiańskiego 27, 50-370, Wrocław, Poland
Bibliografia
  • 1. S. Baccari, L. Iannelli, F. Vasca. 2012. A Parallel Algorithm for Implicit Model Predictive Control with Barrier Function. 2012 IEEE International Conference on Control Applications (CCA) Part of 2012 IEEE Multi-Conference on Systems and Control October 3-5, 2012. Dubrovnik, Croatia. 1405-1410, http://dx.doi.org/10.1109/CCA.2012.6402342
  • 2. J.T. Betts. 2010. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. SIAM, Philadelphia, http://dx.doi.org/10.1137/1.9780898718577
  • 3. R. Bulirsch, F. Montrone, H.J. Pesch. 1991. Abort landing in the presence of windshear as a minimax optimal control problem, part 1: Necessary conditions. Journal of Optimization Theory and Applications. 70:1-23, http://dx.doi.org/10.1007/BF00940502
  • 4. R. Bulirsch, F. Montrone, H. J. Pesch. 1991. Abort landing in the presence of windshear as a minimax optimal control problem, part 2: Multiple shooting and homotopy. Journal of Optimization Theory and Applications. 70:223-254, http://dx.doi.org/10.1007/BF00940625
  • 5. P.W. Chan, K.K. Hon. 2016. Observation and Numerical Simulation of Terrain-Induced Windshear at the Hong Kong International Airport in a Planetary Boundary Layer without Temperature Inversions. Advances in Meteorology. Article ID 1454513, http://dx.doi.org/10.1155/2016/1454513
  • 6. L.H. De Godoy Patire, N.B.F Silva, K.R.L.J.C Branco. 2016. Data fusion techniques applied to takeoff and landing procedures - A VTOL case study. IEEE Latin America Transactions. 14:3962-3966. http://dx.doi.org/10.1109/TLA.2016.7785919
  • 7. P. Dra̧g. 2016. Algorytmy sterowania wielostadialnymi procesami deskryptorowymi. Warszawa, Akademicka Oficyna Wydawnicza EXIT, (in polish)
  • 8. C. Feller, C. Ebenbauer. 2017. A stabilizing iteration scheme for model predictive control based on relaxed barrier functions. Automatica. 80:328-339, https://doi.org/10.1016/j.automatica.2017.02.001
  • 9. K.K. Hon, P.W. Chan. 2014. Terrain-Induced Turbulence Intensity during Tropical Cyclone Passage as Determined from Airborne, Ground-Based, and Remote Sensing Sources. Journal of Atmospheric and Oceanic Technology. 31:2373-2391, http://dx.doi.org/10.1175/JTECH-D-14-00006.1
  • 10. B. Li, K.L. Teo, G.H. Zhao, G.R. Duan. 2009. An efficient computational approach to a class of minmax optimal control problems with applications. ANZIAM Journal. 51:162-177, http://doi.org/10.1017/S1446181110000040
  • 11. MathWorks. 2017. Global Optimization Toolbox. User’s Guide R2017a.
  • 12. F.L.L. Medeiros, V.C.F. Gomes, M.R.C. De Aquino, D. Geraldo, M.E.L. Honorato, L.H.M. Dias. 2015. Proceedings - 2015 Brazilian Conference on Intelligent Systems, BRACIS 2015, pp. 333-338, http://doi.org/10.1109/BRACIS.2015.53
  • 13. A. Miele. 1990. Optimal trajectories and guidance trajectories for aircraft flight through windshears. Proceedings of the 29th IEEE Conference on Decision and Control Part 6 (of 6); Honolulu, HI, USA; 5-7 December 1990. 2:737-746, http://dx.doi.org/10.1109/CDC.1990.203686
  • 14. C. Moscardini, F. Berizzi, M. Martorella, A. Capria. 2011. Signal spectral modelling for airborne radar in the presence of wind-shear phenomena. IET Radar, Sonar and Navigation. 5:796-805, http://dx.doi.org/10.1049/iet-rsn.2010.0234
  • 15. T. Ohtsuka. 2004. A continuation/GMRES method for fast computation of nonlinear receding horizon control. Automatica. 40:563-574, http://doi.org/10.1016/j.automatica.2003.11.005
  • 16. V.S. Patsko, N.D. Botkin, V.M. Kein, V.L. Turova, M.A. Zarkh. 1994. Control of an aircraft landing in windshear. Journal of Optimization Theory and Applications. 83:237-267, http://dx.doi.org/10.1007/BF02190056
  • 17. R. Pytlak, R.B. Vinter. 1999. Feasible Direction Algorithm for Optimal Control Problems with State and Control Constraints: Implementation. Journal of Optimization Theory and Applications. 101:623-649, http://dx.doi.org/10.1023/A:1021742204850
  • 18. C. Shen, B. Buckham, Y. Shi. 2016. Modified C/GMRES Algorithm for Fast Nonlinear Model Predictive Tracking Control of AUVs. IEEE Transactions on Control Systems Technology, http://dx.doi.org/10.1109/TCST.2016.2628803, (to appear)
  • 19. N.B.F. Silva, E.A. Marconato, K.R.L.J.C. Branco. 2015. AVALON: Definition and modeling of a vertical takeoff and landing UAV. Journal of Physics: Conference Series. Vol. 633, Article number 012125, http://dx.doi.org/10.1088/1742-6596/633/1/012125
  • 20. A. Steinboeck, M. Guay, A. Kugi. 2016. Real-Time Nonlinear Model Predictive Control of a Transport-Reaction System. Industrial and Engineering Chemistry Research. 55:7730-7741, http://dx.doi.org/10.1021/acs.iecr.6b00592
  • 21. Szefostwo Służby Hydrometeorologicznej Sił Zbrojnych RP. 2011. Meteorologia dla pilotów - poradnik. Warszawa, 2011, (in polish)
  • 22. L. Zhao, X. Yang, H. Gao, P. Shi. 2013. Automatic Landing System Design Using Multiobjective Robust Control. Journal of Aerospace Engineering. 26:603-617, http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000174
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c71e90fb-51f0-425f-a7c5-280ed14695c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.