PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis of soil–steel composite structure performance at ultimate load: impact of stiffening ribs and geotextile reinforcement

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates soil–steel composite structures, emphasizing the role of stiffening ribs and geotextile reinforcement through comprehensive numerical modeling. This study presents a two-dimensional finite element analysis (FEA) and compares the influence of stiffening rib and geotextile on the ultimate bearing capacity of the soil–steel composite structures. The results of this study demonstrate a significant enhancement in load capacity. Specifically, a notable 47% improvement was observed with a stiffening rib, and a 26% increase was noted with the use of a single layer of geotextile. Under peak load, the vertical displacement at the crown exceeds the permissible standard for all models except for one model, while bending moments reach their limits, marking a failure mode of composite system considered. Structures with stiffened ribs reach their load capacity due to the creation of a plastic hinge around the shoulder and haunch of the shell. On the other hand, in structures without stiffening ribs, the crown and haunch section of the shell becomes fully plastic under peak load. The maximum axial thrust is shown in geotextile-reinforced structure, reaching 78% of the shell maximum capacity due to compression. Eventually, stiffening rib substantially improves overall load-bearing capacity of the soil–steel composite structures, and geotextile placement in the upper part of the backfill reduces shell deflection due to bending.
Rocznik
Strony
art. no. e174, 2024
Opis fizyczny
Bibliogr. 56 poz., fot., rys., wykr.
Twórcy
  • Faculty of Civil Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
  • Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Jimma, P. O. Box 378 Jimma, Ethiopia
  • Faculty of Civil Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
  • Faculty of Civil Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
  • Road, Bridge and Railway Department, Institute of Building Engineering, University of Zielona Góra, Prof. Z. Szafrana St 1, A-8, 65-417 Zielona Góra, Poland
Bibliografia
  • 1. Cichocki R, Moore I, Williams K. Steel buried structures: condition of Ontario structures and review of deterioration mechanisms and rehabilitation approaches. Can J Civ Eng. 2021;48(2):159–72.https://doi.org/10.1139/cjce-2019-0580.
  • 2. Wadi A. Soil-steel composite bridges: research advances and application. Kungliga tekniska högskolan. 2019.
  • 3. Safari S, Du Bose T, Head M, Head HW, Shenton III, Tatar J, Chajes MJ, Karam J, Hastings JN. Diagnostic load testing and assessment of a corroded corrugated metal pipe culvert before rehabilitation. Struct Infrastruct Eng. 2023. https://doi.org/10.1080/15732479.2023.2280053.
  • 4. Legese AM, Różański A, Sobótka M. Effect of shell spacing on mechanical behavior of multi-span soil–steel composite structure. Heliyon. 2023;10(1):e23376. https://doi.org/10.1016/j.heliyon. 2023.e23376.
  • 5. Williams K, MacKinnon S, Newhook J. New and innovative developments for design and installation of deep corrugated buried flexible steel structures. In: The 2nd European conference on buried flexible structures. 2012; no. 12, pp. 265–274.
  • 6. Legese AM, Sobótka M, Machelski C, Różański A. Behaviour of soil–steel composite structures during construction and service: a review. Arch Civ Eng. 2023;69(4):263–92.
  • 7. Embaby K, El Naggar MH, El Sharnouby M. Performance of large-span arched soil–steel structures under soil loading. Thin-Walled Struct. 2022;172:108884. https://doi.org/10.1016/j.tws.2022.108884.
  • 8. Abdel-Sayed G, Bakht B, Jaeger LG. Soil-steel bridges: designand construction. McGraw-Hill [Online]. 1993. Available from:http://worldcat.org/isbn/0070030219.
  • 9. Beben D. Soil-Steel Bridges; Design, Maintenance and Durability. Cham: Springer; 2020. https:// doi. org/ 10. 1007/978-3-030-34788-8.
  • 10. Okafor CC, Rojas OL, Liu B, Turner K, Anderson JB, Davidson JS. Load rating corrugated metal culverts with shallow soilcover. J Perform Constr Facil. 2023;37(2):4023005. https://doi.org/10.1061/JPCFEV.CFENG-4136.
  • 11. Uddin MA, Yoon Y, Head M, Abiona QO. Determination of grouping factors for bridge deterioration analysis. Constr Res Congr. 2024;2024:238–48. https://doi.org/10.1061/9780784485262.025.
  • 12. Wysokowski A, Janusz L. Shell-soil bridge structures. Laboratory destructive tests. Failure during construction and operation.(In Polish), In: Proceedings of Awarie Budowlane XXII – Conference on Structural Failures. 2007, pp. 541–550.
  • 13. Beben D. Numerical analysis of a soil–steel bridge structure. Balt J Road Bridg Eng. 2009;4(1):13–21. https:// doi. org/ 10.3846/1822-427X.2009.4.13-21.
  • 14. Machelski C, Korusiewicz L. Testing the load capacity of a soil–steel box structure. Roads Bridg Drog i Most. 2018;17(3):181–91. https://doi.org/10.7409/rabdim.018.011.
  • 15. Maleska T, Beben D. Numerical analysis of a soil–steel bridge during backfilling using various shell models. Eng Struct.2019;196:109358. https:// doi. org/ 10. 1016/j. engst ruct. 2019.109358.
  • 16. Pettersson L, Sundquist H. Design of soil steel composite bridges. KTH Royal Institute of Technology. 2014.
  • 17. Kovalchuk V, Sysyn M, Movahedi Rad M, Fischer S. Investigation of the bearing capacity of transport constructions made of corrugated metal structures reinforced with transversal stiffening ribs. Infrastructures. 2023;8(9):131. https://doi.org/10.3390/infrastructures8090131.
  • 18. Morrison TD, Eng P. Innovative low cover bridges utilizing deep-corrugated steel plate with encased concrete compositeribs. In: 2005 annual conference of the transportation association of Canada. Citeseer: Princeton; 2005. p. 24–50.
  • 19. Flener EB. Response of long-span box type soil–steel composite structures during ultimate loading tests. J Bridg Eng. 2009;14(6):496–506. https:// doi. org/ 10. 1061/ (asce) be. 1943-5592.0000031.
  • 20. Moore ID, Taleb B. Metal culvert response to live loading: performance of three-dimensional analysis. Transp Res Rec. 1999;1656(1):37–44. https://doi.org/10.3141/1656-05.
  • 21. Moore ID, Hoult NA. Performance of two-dimensional analysis: deteriorated metal culverts under surface live load. Tunn Undergr Sp Technol. 2014;42:152–60. https://doi.org/10.1016/j.tust.2014.02.015.
  • 22. Beben D. Field performance of corrugated steel plate road culvert under normal live-load conditions. J Perform Constr Facil. 2013;27(6):807–17. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000389.
  • 23. Sobótka M. Numerical simulation of hysteretic live load effectin a soil–steel bridge. Stud Geotech Mech. 2014;36(1):104–10.https://doi.org/10.2478/sgem-2014-0012.
  • 24. Embaby K, El Naggar MH, El-Sharnouby M. Ultimate capacity of large-span soil–steel structures. Tunn Undergr Sp Technol. 2023;132:104887.
  • 25. Sargand S, Khoury I, Masada T, Mutashar R. Forensic Study on a collapsed structural plate-arch culvert in Ohio. J Perform Constr Facil. 2016;30(6):4016048. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000903.
  • 26. Wysokowski A. Full scale tests of various buried flexible structures under failure load. Sci Rep. 2022;12(1):1–14. https://doi.org/10.1038/s41598-022-04969-7.
  • 27. Caltrans S. California amendments to AASHTO LRFD bridge design specifications. California Department of Transportation Sacramento. CA, USA; 2019.
  • 28. C. S. Association. CHBDC (Canadian Highway Bridge Design Code). CAN/CSA-S6–14; 2019.
  • 29. Polish Standards of bridge load–PN-85/S10030. Bridge structures Loads. Warsaw; 2013.
  • 30. Sia BJ, GVSC. US Army Combat Capabilities Development Command. Military Load Classification; 2021.
  • 31. Brachman RWI, Moore ID, Mak AC. Ultimate limit state of deep-corrugated large-span box culvert. Transp Res Rec. 2010;2201(1):55–61. https://doi.org/10.3141/2201-07.
  • 32. Chimauriya HR, Azizian M, Raut S, Najafi M, Yu X. Performance of a corrugated metal pipe with shallow burial depth in loosely compacted sand: soil box test and 3D finite element modeling. Transp Geotech. 2023;43:101134.
  • 33. Wadi A, Pettersson L, Karoumi R. On predicting the ultimate capacity of a large-span soil–steel composite bridge. Int J Geosynth Gr Eng. 2020;6(4):1–13. https:// doi. org/ 10. 1007/s40891-020-00232-z.
  • 34. Vaslestad J, Janusz L, Bednarek B, Mielnik Ł. Instrumented full-scale test with geogird above the crown of corrugated steel boxculvert. In: Proceedings of the seventh international conference on geosynthetics, Geosynthetics State of the Art Recent Developments. 2002; pp. 1153–1155.
  • 35. Sanaeiha A, Rahimian M, Marefat MS. Field test of a large-spansoil–steel bridge stiffened by concrete rings during backfilling. J Bridg Eng. 2017;22(10):06017002. https://doi.org/10.1061/(asce)be.1943-5592.0001102.
  • 36. Maleska T, Wysokowski A, Bęben D. Impact of reinforcement layer in soil–steel culvert on laboratory and numerical tests. In: International Scientific Conference Environmental Challenges in Civil Engineering. Cham: Springer; 2022. p. 139–48.
  • 37. C. H. B. D. Code. CAN/CSA-S6–14. Canadian Standards Association International, Canada. 2014.
  • 38. Pettersson L, Sundquist H. Design of soil steel composite bridges. Arch Civ Mech Eng. 2014;5:1–82.
  • 39. A. Wysokowski. (2017) Durability of flexible steel corrugated shell structures-theory and practice. Arch. Inst. Civ. Eng., pp.347–360, https://doi.org/10.21008/j.1897-4007.2017.23.32.
  • 40. Wysokowski A. Influence of single-layer geotextile reinforcement on load capacity of buried steel box structure based on laboratory full-scale tests. Thin-Walled Struct. 2021;159:107312.
  • 41. Beben D, Maleska T, Janda A, Nowacka J. The behaviour of shal-low-buried corrugated steel plate bridge with RC slab and EPS geofoam under static live loads. Transp Infrastruct Geotechnol. 2023. https://doi.org/10.1007/s40515-023-00361-8.
  • 42. Zimmermann T, Truty A, Urbanski A, Podles K. ZS oil user manual. Zace Serv. Switz. 2016.
  • 43. Machelski C, Sobótka M, Grosel S. Displacements of shell insoil–steel bridge subjected to moving load: determination using strain gauge measurements and numerical simulation. Stud Geotech Mech. 2022;44(1):26–37. https:// doi. org/ 10. 2478/sgem-2021-0028.
  • 44. Łydżba D, Różański A, Sobótka M, Stefaniuk D, Chudy G, Wróblewski T. Mechanical behavior of soil–steel structure sub-jected to live loads and different water conditions. Arch Inst Inżynierii Lądowej. 2017.
  • 45. Machelski C, Janusz L. Application of results of tests in developing a two-dimensional model for soil–steel railway bridges. Transp Res Rec. 2017;2656(1):53–60. https://doi.org/10.3141/2656-06.
  • 46. ViaCon Poland. Catalogues English. 2022. https://viacon.pl/en/download. Accessed 11 Feb 2022.
  • 47. Brachman RWI, Elshimi TM, Mak AC, Moore ID. Testing and analysis of a deep-corrugated large-span box culvert prior toburial. J Bridg Eng. 2012;17(1):81–8. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000202.
  • 48. Liu Y, Moore ID, Hoult NA, Lan H. Numerical investigation of the structural behavior of corrugated steel culverts under surface load tests using three-dimensional finite-element analyses. J Pipeline Syst Eng Pract. 2023;14(2):4023002. https://doi.org/10.1061/JPSEA2.PSENG-1412.
  • 49. Wadi A, Pettersson L, Karoumi R. FEM simulation of a full-scale loading-to-failure test of a corrugated steel culvert. Steel Compos Struct. 2018;27(2):217–27. https://doi.org/10.12989/scs.2018.27.2.217.
  • 50. Wadi A, Pettersson L, Karoumi R. Flexible culverts in sloping terrain: numerical simulation of avalanche load effects. Cold Reg Sci Technol. 2016;124:95–109. https://doi.org/10.1016/j.coldregions.2016.01.003.
  • 51. Czesław Machelski SG, Sobótka M. Displacements of shellin soil–steel bridge subjected to moving load : determination using strain gauge measurements and numerical simulation. Stud Geotech Mech. 2021;44(1):1–12. https://doi.org/10.2478/sgem-2021-0028.
  • 52. Ezzeldin I, El Naggar H. Numerical modelling of induced stresses in buried corrugated metal structures due to compaction efforts. Transp Geotech. 2022;32:100706. https://doi.org/10.1016/j.trgeo.2021.100706.
  • 53. Sobótka M, Łydżba D. Live load effect in soil–steel flexible culvert: role of apparent cohesion of backfill. Eur J Environ Civ Eng. 2019. https://doi.org/10.1080/19648189.2019.1670264.
  • 54. Regier C, Hoult NA, Moore ID. Laboratory study on the behavior of a horizontal-ellipse culvert during service and ultimate load testing. J Bridg Eng. 2017;22(3):4016131.
  • 55. Pettersson L. Full scale tests and structural evaluation of soil steel flexible culverts with low height of cover. KTH Royal Institute of Technology. [Online]. 2007; BAB II.pdf. Available from: http://digilib.unila.ac.id/11478/16/16.
  • 56. Embaby K. Performance and ultimate limit state of large-spansoil–steel structures. The University of Western Ontario. 2022.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c71e3acc-906c-45c9-93e3-486e36ef95fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.