PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the major challenges in the field of wearable devices is to accurately measure physiological parameters during dynamic activities. The aim of this work is to present a completely wearable Wireless Body Sensor Network (WBSN) for cardio-respiratory monitoring during dynamic activities and a validation of the devices composing the WBSN against reference measurement systems. The WBSN is composed of three inertial measurement units (IMUs) to detect the respiratory rate (RR), and of a fourth unit to detect the pulse rate (PR). 30 healthy volunteers (17 men, mean age 25.9 ± 6.0 years, mean weight 68.7 ± 9.7 kg, mean height 170.9 ± 9.5 cm) were enrolled in a validation protocol consisting in walking, running, and cycling. The participants had to simultaneously wear the devices of the WBSN and reference instruments. The IMU-based system proved to be particularly effective in monitoring RR during cycling, with a RMSE of 3.77 bpm for the complete cohort, and during running. The respiratory signal during walking exhibited a frequency content like the stride, making it difficult to properly filter the desired signal content. PR showed good agreement with the reference heart rate monitor. The system exploits information regarding motion to improve RR estimation during dynamic activities thanks to an ad hoc signal processing algorithm.
Twórcy
  • Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.zza Leonardo Da Vinci 32, 20133 Milan, Italy
  • Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.zza Leonardo Da Vinci 32, 20133 Milan, Italy
  • E4Sports Lab, Politecnico di Milano, Via G. Previati 1/c, 23900 Lecco, Italy
  • Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.zza Leonardo Da Vinci 32, 20133 Milan, Italy
  • E4Sports Lab, Politecnico di Milano, Via G. Previati 1/c, 23900 Lecco, Italy
  • Department of Mechanics, Politecnico di Milano, P.zza Leonardo Da Vinci 32, 20133 Milan, Italy
  • Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.zza Leonardo Da Vinci 32, 20133 Milan, Italy
  • E4Sports Lab, Politecnico di Milano, Via G. Previati 1/c, 23900 Lecco, Italy
  • E4Sports Lab, Politecnico di Milano, Via G. Previati 1/c, 23900 Lecco, Italy
  • Department of Mechanics, Politecnico di Milano, P.zza Leonardo Da Vinci 32, 20133 Milan, Italy
  • Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.zza Leonardo Da Vinci 32, 20133 Milan, Italy
Bibliografia
  • [1] Aliverti A. Wearable technology: role in respiratory health and disease. Breathe 2017;13:e27-36. https://doi.org/10.1183/20734735.008417.
  • [2] Smart Wearables Market - Industry Size & Share n.d. https://www. mordorintelligence.com/industry-reports/smart-wearables-market (accessed January 18, 2024).
  • [3] Gerhardt U, Breitschwerdt R, Thomas O. mHealth engineering: a technology review. J Inform Technol Theor Applic (JITTA) 2018;19:5.
  • [4] Angelucci A, Aliverti A. Telemonitoring systems for respiratory patients: technological aspects. Pulmonology 2020;26:221-32. https://doi.org/10.1016/j. pulmoe.2019.11.006.
  • [5] Aliverti A, Evangelisti M, Angelucci A. Wearable Tech for Long-Distance Runners. In: Canata GL, Jones H, Krutsch W, Thoreux P, Vascellari A, editors. The Running Athlete: A Comprehensive Overview of Running in Different Sports, Berlin, Heidelberg: Springer Berlin Heidelberg; 2022, p. 77-89. Doi: 10.1007/978-3-662- 65064-6_10.
  • [6] Chan M, Estève D, Fourniols J-Y, Escriba C, Campo E. Smart wearable systems: current status and future challenges. Artif Intell Med 2012;56:137-56.
  • [7] Bernasconi S, Angelucci A, Aliverti A. A scoping review on wearable devices for environmental monitoring and their application for health and wellness. Sensors 2022;22:5994.
  • [8] Bernasconi S, Angelucci A, Aliverti A. Evaluation of a new wearable device for indoor and outdoor environmental monitoring. In: 2024 IEEE International Workshop on Sport, Technology and Research (STAR), 2024, p. 252-7. Doi: 10.1109/STAR62027.2024.10635952.
  • [9] Such O. Motion tolerance in wearable sensors - The challenge of motion artifact. 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, p. 1542-5. Doi: 10.1109/IEMBS.2007.4352597.
  • [10] Taebi A, Solar BE, Bomar AJ, Sandler RH, Mansy HA. Recent Advances in Seismocardiography Vibration 2019;2:64-86. https://doi.org/10.3390/ vibration2010005.
  • [11] Ganti VG, Gazi AH, An S, Srivatsa AV, Nevius BN, Nichols CJ, et al. Wearable seismocardiography-based assessment of stroke volume in congenital heart disease. J Am Heart Assoc 2022;11:e026067.
  • [12] Angelucci A, Parra Villamar OW, Agostoni P, Aliverti A. Design and Evaluation of a Wearable Single-Lead ECG for Continuous Monitoring. 2023 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), 2023. Doi: 10.1109/MetroXRAINE58569.2023.10405813.
  • [13] Greco M, Angelucci A, Avidano G, Marelli G, Canali S, Aceto R, et al. Wearable health technology for preoperative risk assessment in elderly patients: the WELCOME study. Diagnostics 2023;13. Doi: 10.3390/diagnostics13040630.
  • [14] Angelucci A, Greco M, Canali S, Marelli G, Avidano G, Goretti G, et al. Fitbit data to assess functional capacity in patients before elective surgery: pilot prospective observational study. J Med Internet Res 2023;25:e42815.
  • [15] Bernasconi S, Angelucci A, De Cesari A, Masotti A, Pandocchi M, Vacca F, et al. Recent technologies for transcutaneous oxygen and carbon dioxide monitoring. Diagnostics 2024;14. Doi: 10.3390/diagnostics14080785.
  • [16] Grenvik A, Hedstrand U, Sjögren H. Problems in pneumotachography. Acta Anaesthesiol Scand 1966;10:147-55. https://doi.org/10.1111/j.1399-6576.1966. tb00339.x.
  • [17] Faria I, Gaspar C, Zamith M, Matias I, César Das Neves R, Rodrigues F, et al. TELEMOLD project: Oximetry and exercise telemonitoring to improve long-term oxygen therapy. Telemedicine and E-Health 2014;20:626-32. Doi: 10.1089/tmj.2013.0248.
  • [18] Nicolò A, Massaroni C, Passfield L. Respiratory frequency during exercise: the neglected physiological measure. Front Physiol 2017;8:922. https://doi.org/10.3389/fphys.2017.00922.
  • [19] Monaco V, Stefanini C. Assessing the tidal volume through wearables: a scoping review. Sensors 2021;21. Doi: 10.3390/s21124124.
  • [20] Massone P, Angelucci A, Aliverti A. On the Measurement of Tidal Volume with Wearable Devices. In: Montanari R, Richetta M, Febbi M, Staderini EM, editors. Engineering Methodologies for Medicine and Sports. Cham: Springer Nature Switzerland; 2024. p. 117-28.
  • [21] Liu H, Allen J, Zheng D, Chen F. Recent development of respiratory rate measurement technologies. Physiol Meas 2019;40:07TR01.
  • [22] Angelucci A, Aliverti A. The Medical Internet of Things: applications in respiratory medicine. In: Pinnock H, Poberezhets V, Drummond D, editors. Digital Respiratory Healthcare (ERS Monograph), Sheffield: European Respiratory Society; 2023, p. 1-15. Doi: 10.1183/2312508X.10000423.
  • [23] Villar R, Beltrame T, Hughson RL. Validation of the Hexoskin wearable vest during lying, sitting, standing, and walking activities. Appl Physiol Nutr Metab 2015;40: 1019-24. https://doi.org/10.1139/apnm-2015-0140.
  • [24] Angelucci A, Kuller D, Aliverti A. A home telemedicine system for continuous respiratory monitoring. IEEE J Biomed Health Inform 2020. https://doi.org/10.1109/JBHI.2020.3012621.
  • [25] Angelucci A, Kuller D, Aliverti A. A home telemedicine system for continuous respiratory monitoring. IEEE J Biomed Health Inform 2021;25. Doi: 10.1109/JBHI.2020.3012621.
  • [26] Angelucci A, Cavicchioli M, Cintorrino IA, Lauricella G, Rossi C, Strati S, et al. Smart textiles and sensorized garments for physiological monitoring: a review of available solutions and techniques. Sensors (Switzerland) 2021;21:1-23. https://doi.org/10.3390/s21030814.
  • [27] Kundu SK, Kumagai S, Sasaki M. A wearable capacitive sensor for monitoring human respiratory rate. Jpn J Appl Phys 2013;52:04CL05.
  • [28] Pennati F, Angelucci A, Morelli L, Bardini S, Barzanti E, Cavallini F, et al. Electrical Impedance Tomography: From the Traditional Design to the Novel Frontier of Wearables. Sensors 2023;23. Doi: 10.3390/s23031182.
  • [29] Cesareo A, Nido SA, Biffi E, Gandossini S, D’angelo MG, Aliverti A. A wearable device for breathing frequency monitoring: a pilot study on patients with muscular dystrophy. Sensors 2020;20:5346.
  • [30] Zhang H, Wang Z, Teng C, Kumar S, Li X, Min R. Wearable cardiorespiratory sensor for real-time monitoring with smartphone integration. IEEE Trans Instrum Meas 2024;73:1-10. https://doi.org/10.1109/TIM.2023.3338709.
  • [31] Wang Z, Chen Z, Ma L, Wang Q, Wang H, Leal-Junior A, et al. Optical microfiber intelligent sensor: wearable cardiorespiratory and behavior monitoring with a flexible wave-shaped polymer optical microfiber. ACS Appl Mater Interfaces 2024; 16:8333-45. https://doi.org/10.1021/acsami.3c16165.
  • [32] Antonelli A, Guilizzoni D, Angelucci A, Melloni G, Mazza F, Stanzi A, et al. Comparison between the AirgoTM Device and a Metabolic Cart during Rest and Exercise. Sensors 2020:20. https://doi.org/10.3390/s20143943.
  • [33] Lanatà A, Scilingo EP, Nardini E, Loriga G, Paradiso R, De-Rossi D. Comparative evaluation of susceptibility to motion artifact in different wearable systems for monitoring respiratory rate. IEEE Trans Inf Technol Biomed 2010;14:378-86. https://doi.org/10.1109/TITB.2009.2037614.
  • [34] MonBaby Baby Monitors n.d. https://monbabysleep.com/(accessed May 17, 2022).
  • [35] Liu GZ, Guo YW, Zhu QS, Huang BY, Wang L. Estimation of respiration rate from three-dimensional acceleration data based on body sensor network. Telemed J E Health 2011;17:705-11. https://doi.org/10.1089/tmj.2011.0022.
  • [36] Romei M, Lo MA, D’Angelo MG, Turconi AC, Bresolin N, Pedotti A, et al. Effects of gender and posture on thoraco-abdominal kinematics during quiet breathing in healthy adults. Respir Physiol Neurobiol 2010;172:184-91. https://doi.org/10.1016/j.resp.2010.05.018.
  • [37] Sackner MA, Watson H, Belsito AS, Feinerman D, Suarez M, Gonzalez G, et al. Calibration of respiratory inductive plethysmograph during natural breathing. J Appl Physiol 1989;66:410-20. https://doi.org/10.1152/jappl.1989.66.1.410.
  • [38] Angelucci A, Camuncoli F, Galli M, Aliverti A. A wearable system for respiratory signal filtering based on activity: a preliminary validation. 2022 IEEE International Workshop on Sport, Technology and Research (STAR), 2022, p. 19-23. Doi: 10.1109/star53492.2022.9860001.
  • [39] Angelucci A, Camuncoli F, Dotti F, Bertozzi F, Galli M, Tarabini M, et al. IEEE International Workshop on Sport. Technology and Research (STAR) 2023;2023: 1-4. https://doi.org/10.1109/STAR58331.2023.10302438.
  • [40] Aliverti A, Dellacà R, Pelosi P, Chiumello D, Gattinoni L, Pedotti A. Compartmental analysis of breathing in the supine and prone positions by optoelectronic plethysmography. Ann Biomed Eng 2001;29:60-70. https://doi.org/10.1114/ 1.1332084.
  • [41] Aliverti A, Lacca D, LoMauro A. Quantitative analysis by 3D graphics of thoraco-abdominal surface shape and breathing motion. Front Bioeng Biotechnol 2022;10: 910499. https://doi.org/10.3389/FBIOE.2022.910499/BIBTEX.
  • [42] ANT / ANT+Defined - THIS IS ANT n.d. https://www.thisisant.com/developer/ant-plus/ant-antplus-defined (accessed July 11, 2023).
  • [43] Madgwick SOH, Harrison AJL, Vaidyanathan R. Estimation of IMU and MARG orientation using a gradient descent algorithm. 2011 IEEE international conference on rehabilitation robotics, IEEE; 2011, p. 1-7.
  • [44] Angelucci A, Aliverti A. An IMU-based wearable system for respiratory rate estimation in static and dynamic conditions. Cardiovasc Eng Technol 2023:1-13. https://doi.org/10.1007/S13239-023-00657-3/FIGURES/8.
  • [45] Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res 1999;8:135-60. https://doi.org/10.1177/ 096228029900800204.
  • [46] Montgomery DC, Peck EA, Vining GG. Introduction to linear regression analysis. John Wiley & Sons; 2021.
  • [47] Chai T, Draxler RR. Root mean square error (RMSE) or mean absolute error (MAE). Geosci Model Dev Discuss 2014;7:1525-34.
  • [48] Bourke P. Cross correlation. Cross Correlation”, Auto Correlation - 2D Pattern Identification 1996.
  • [49] Severinghaus JW, Naifeh KH, Koh SO. Errors in 14 pulse oximeters during profound hypoxia. J Clin Monit 1989;5:72-81. https://doi.org/10.1007/ BF01617877.
  • [50] Cretikos MA, Bellomo R, Hillman K, Chen J, Finfer S, Flabouris A. Respiratory rate: the neglected vital sign. Med J Aust 2008;188:657-9. https://doi.org/10.5694/ j.1326-5377.2008.tb02165.x.
  • [51] Cesareo A, Gandolfi S, Pini I, Biffi E, Reni G, Aliverti A. A novel, low cost, wearable contact-based device for breathing frequency monitoring. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2017:2402-5. Doi: 10.1109/EMBC.2017.8037340.
  • [52] Cesareo A, Biffi E, Cuesta-Frau D, D’Angelo MG, Aliverti A. A novel acquisition platform for long-term breathing frequency monitoring based on inertial measurement units. Med Biol Eng Comput 2020;58:785-804. https://doi.org/10.1007/s11517-020-02125-9.
  • [53] Nicolò A, Massaroni C, Schena E, Sacchetti M. The importance of respiratory rate monitoring: From healthcare to sport and exercise. Sensors (Switzerland) 2020;20: 1-45. https://doi.org/10.3390/s20216396.
  • [54] Angelucci A, Aliverti A, Froio D, Moro F. Metodo per il monitoraggio della frequenza respiratoria di una persona. 102021000029204, 2021.
  • [55] Winter DA. Human balance and posture control during standing and walking. Gait Posture 1995;3:193-214. https://doi.org/10.1016/0966-6362(96)82849-9.
  • [56] Angelucci A, Bernasconi S, D’Andrea M, Contini M, Gugliandolo P, Agostoni P, et al. Integration of a body sensor network of wearable devices for cardio-respiratory monitoring. In: 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2023, p. 1-4. Doi: 10.1109/EMBC40787.2023.10340495.
  • [57] Contini M, Angelucci A, Aliverti A, Gugliandolo P, Pezzuto B, Berna G, et al. Comparison between PtCO2 and PaCO2 and derived parameters in heart failure patients during exercise: a preliminary study. Sensors 2021;21:6666.
  • [58] Angelucci A, Bernasconi S, Colombo L, Contini M, Gugliandolo P, Agostoni P, et al. A wearable device to monitor the partial pressure of transcutaneous carbon dioxide. IEEE Trans Instrum Meas 2024::1. https://doi.org/10.1109/TIM.2024.3369136.
  • [59] Angelucci A, Aliverti A. A Wearable Body Sensor Network for Personal Monitoring During Daily Life: Technology and Applications. In: Montanari R, Richetta M, Febbi M, Staderini EM, editors. Engineering Methodologies for Medicine and Sports. Cham: Springer Nature Switzerland; 2024. p. 129-39.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c71aa264-c95b-49be-96e0-28c369db9acb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.