Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article presents a new development of an indirect stator flux-oriented controller for sensorless speed induction motor drive utilising instantaneous and steady-state values, respectively, of a fictitious resistance symbolised as R_f. The dimension of the fictitious quantity, in this context, is the ohm, which is the difference between the stator d- and q-axis fictitious resistances. However, from the measurement of the stator voltage and currents of the machine, two independent resistance estimators are built. Therefore, the first is considered as a reference model of the induction machine (IM), and the second is considered as an adjustable model. Subsequently, the error between the states of the two models is used to drive a suitable adaptation mechanism that generates the estimation of the speed, for the adjustable model. Furthermore, the structure of the proposed estimator is free from stator resistance and eliminates the requirement of any flux computation. All the detailed simulation study is carried out in MATLAB/Simulink to validate the proposed method and to highlight the robustness and the stability of the proposed model reference adaptive system estimator.
Wydawca
Czasopismo
Rocznik
Tom
Strony
199--212
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
- Laboratory of Sciences and Techniques of Automatic control & computer engineering (Lab-STA), National School of Engineering of Sfax, niversity of Sfax. Postal Box 1173, 3038 Sfax, Tunisia
autor
- Institut Supérieur des Etudes Technologiques de Bizerte, Route Menzel Abderrahmen – Zarzouna 7021 Bizerte, 7021, Tunisia
autor
- Laboratory of Sciences and Techniques of Automatic control & computer engineering (Lab-STA), National School of Engineering of Sfax, University of Sfax. Postal Box 1173, 3038 Sfax, Tunisia
- Institut Supérieur des Etudes Technologiques de Sfax, Route de mahdia Km 2.5, 3099 El Bustan, Sfax, Tunisia
autor
- Institut Supérieur des Etudes Technologiques de Sfax, Route de mahdia Km 2.5, 3099 El Bustan, Sfax, Tunisia
autor
- Laboratory of Sciences and Techniques of Automatic control & computer engineering (Lab-STA), National School of Engineering of Sfax, University of Sfax. Postal Box 1173, 3038 Sfax, Tunisia
- Institut Supérieur des Etudes Technologiques de Sfax, Route de mahdia Km 2.5, 3099 El Bustan, Sfax, Tunisia
Bibliografia
- Abhisek, P. and Sukanta, D. (2016). A New Sensorless Speed Estimation Strategy for Induction Motor Driven Electric Vehicle with Energy Optimization Scheme. 1st IEEE International Conference on Power Electronics. Intelligent Control and Energy Systems, Delhi, India, 4–6 July 2016, pp. 1–6.
- Agrebi Zorgani, Y., Jouili, M., Koubaa, Y. and Boussak, M. (2018). A Very Low Speed Sensorless Control Induction Motor Drive with Online Rotor Resistance Using MRAS Scheme. Power Electronics and Drives, 3(3), 171–186.
- Agrebi-Zorgani, Y., Koubaa, Y. and Boussak, M. (2010). Simultaneous Estimation of Speed and Rotor Resistance in Sensorless ISFOC Induction Motor Drive Based on MRAS Scheme. IEEE International Conference on Electrical Machines ICEM, Rome, 6–8 September, pp. 1–6.
- Agrebi-Zorgani, Y., Koubaa, Y. and Boussak, M. (2012). Sensorless Speed Control with MRAS for Induction Motor Drive. IEEE International Conference on Electrical Machines ICEM, Marseille, 2–5 September, pp. 2257–2263.
- Agrebi-Zorgani, Y., Koubaa, Y. and Boussak, M. (2016). MRAS State Estimator for Speed Sensorless ISFOC Induction Motor Drives with Luenberger Load Torque Estimation. ISA Transactions, 61, pp. 308–317.
- Alkorta, P., Barambones, O., Cortajarena, J. A. and Zubizarrreta, A. (2014). Efficient Multivariable Generalized Predictive Control for Sensorless Induction Motor Drives. IEEE Transactions on Industrial Electronics, 61(9), 5126–5134.
- Alonge, F., Cangemi, T., D’Ippolito, F., Fagiolini, A. and Sferlazza, A. (2015). Convergence Analysis of Extended Kalman Filter for Sensorless Control of Induction Motor. IEEE Transactions on Industrial Electronics, 62(4), 2341–2352.
- Comanescu, M. (2015). A robust sensorless sliding mode observer with speed estimate for the flux magnitude of the induction motor drive. In: 9th International Conference on Compatibility and Power Electronics, Costa da Caparica, Portugal, pp. 224–229.
- Dybkowski, M. (2018). Universal Speed and Flux Estimator for Induction Motor. Power Electronics and Drives, AOP. doi: 10.2478/pead-2018-0007.
- Dybkowski, M. and Orlowska-Kowalska, T. (2013). Speed sensorless induction motor drive system with MRAS type speed and flux estimator and additional parameter identification. In: 11th IFAC International Workshop on Adaptation and Learning in Control and Signal Processing, Caen, France, 3–5 July, pp. 33–38.
- Farza, M., M’Saad, M., Dorl´eans, Ph. and Massieu, J. F. (2011). High gain observer for sensorless induction motor. In: 18th IFAC World Congress, Milano, Italy, August 28 – September 2, pp. 674–679.
- Farza, M., M’Saad, M., Ménard, T., Ltaief, A. and Maatoug, T. (2018). Adaptive Observer Design for A Class of Nonlinear Systems. Application to Speed Sensorless Induction Moto. Automatica, 90, 239–247.
- Gao, Q., Asher, G. and Sumner, M. (2013). Implementation of Sensorless Control of Induction Machines Using Only Fundamental PWM Waveforms of A Two-Level Converter. IET Power Electronics, 6(8), 1575–1582.
- Gennaro, S. D., Dominguez, J. R. and Meza, M. A. (2014). Sensorless High Order Sliding Mode Control of Induction Motors with Core Loss. IEEE Transactions on Industrial Electronics, 61(6), 2678–2689.
- Habibullah, M. and Lu, D. D.-C. (2015). A Speed-Sensorless FS-PTC of Induction Motors Using Extended Kalman Filters. IEEE Transactions on Industrial Electronics, 62(11), 6765–6778.
- Jouili, M., Agrebi, Y., Koubaa, Y. and Boussak, M. (2015). A Stability Analysis of Simultaneous Estimation of Speed and Stator Resistance for Sensorless IRFOC Induction Motor Drives. International Journal of Sciences and Techniques of Automatic Control & Computer Engineering IJ-STA, 9(1), 2026−2034.
- Maiti, S., and Chakraborty, C. H. (2010). A New Instantaneous Reactive Power Based MRAS For Sensorless Induction Motor Drive. Simulation Modelling Practice And Theory, 18(9), 1314–1326.
- Matic, P. R., Gecic, M. A., Lekic, D. M. and Marcetic, D. P. (2015). Thermal Protection of Vector-Controlled IM Drive. IEEE Transactions on Industrial Electronics, 62(4), 2082–2089.
- Mezouar, A., Fellah, M. K. and Hadjeri, S. (2008). Adaptive Sliding-Mode-Observer for Sensorless Induction Motor Drive Using Two-Time-Scale Approach. Simulation Modelling Practice and Theory, 16(9), 1323–1336.
- Niasar, A. H. and Khoei, H. R. (2015). Sensorless Direct Power Control of Induction Motor Drive Using Artificial Neural Network. Advances in Artificial Neural Systems, Article ID 318589.
- Orlowska-kowalska, T. and Dybkowski, M. (2010). Stator-Current-Based MRAS Estimator for a Wide Range Speed-Sensorless IM drive. IEEE Transactions on Industrial Electronics, 57(4), 1296–1308.
- Popovic, V. M., Gecic, M. A., Vasic, V. V., Oros, D. V. and Marcetic, D. P. (2014). Evaluation of Luenberger observer based sensorless method for IM. International Symposium on International Electronics, INDEL, 6–8 November, pp. 128–133.
- Rashed, M. and Stronach, A. F. (2004). A Stable Back-EMF MRAS-Based Sensorless Low Speed Induction Motor Drive Insensitive to Stator Resistance Variation. IEE Proceedings - Electric Power Applications, 151(6), 685–693.
- Rayyam, M. and Zazi, M. (2019). A Novel Metaheuristic Model-Based Approach for Accurate Online Broken Bar Fault Diagnosis in Induction Motor Using Unscented Kalman Filter and ant Lion Optimizer. Transactions of the Institute of Measurement and Control, 42(8), 1537–1546.
- Thuy Pham, N., Phu Nguyen, D. and Huu Nguyen, K. (2018). An Improved Neural Network SC_MRAS Speed Observer in Sensorless Control for Six Phase Induction Drives. WSEAS Transactions on Systems and Control, l(13), 364–374.
- Urbański, K. (2014). Comparison of methods for back EMF estimation at low speed for PMSM Drive. In: 16th International Conference on Mechatronics – Mechatronika, pp. 32–37.
- Verma, R., Verma, V. and Chakraborty, C. (2014). ANN based sensorless vector controlled induction motor drive suitable for four quadrant operation. In: Proceeding of the 2014 IEEE Students’ Technology Symposium, Kharagpur, pp. 182–187.
- Wang, F. (2014). Encoderless Finite-State Predictive Torque Control for Induction Machine with Acompensated MRAS. IEEE Transactions on Industrial Informatics, 10(2), 1097–1106.
- Yoon, Y. D. and Sul, S. K. (2014). Sensorless Control for Induction Machines Based on Square-Wave Voltage Injection. IEEE Transactions on Power Electronics, 29(7), 3637–3645.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c71013f4-bcbd-4d39-9eb7-adaf7e717b1f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.