PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of loads in the process of laying on the resource of sea pipelines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In the process of laying on the bottom of the sea material of the pipeline undergoes single-cycle alternating load. The purpose of the work is to determine the effect of pre-operational loads on the resource of marine pipelines. Design/methodology/approach: The influence of the method of construction of pipelines on their stress-strain state is analysed. According to the real modes of packing of sea pipelines, the loading regime is programmed and the laboratory modelling of the pipelaying process by the S-method has been programmed. Findings: According to the results of one-cycle shift load were obtained characteristics of the hysteresis loop. It is proposed to simplify the mathematical description of the hysteresis loop of the pipeline laying cycle in the given form. It was shown that the preload during the construction process negatively affects the durability of the pipeline material due to the exhaustion of its plasticity resource, reducing it to 70%. Research limitations/implications: In the future, investigations into the effect of overloading and overloading during the repair of pipeline sections on their durability and on the safe exploitation of resources should be continued. Practical implications: The developed method of estimation of influence of preoperational loads in the process of pipeline laying on its safe exploitation resource is used in gas-extraction enterprises. Originality/value: To forecast the deformation behaviour of the pipeline material in the laying cycle, it is efficient to use diagrams of a sign-changing single-cycle bend, which were built considering the creep. The fatigue life capability of a steel pipeline depends on the history of the pipeline load in the laying cycle. Ratio σ*0.2c / σ* 0.2t and εyc / ε yt can use as power and deformation criteria for evaluating Bauschinger effect. It is suggested that fatigue damage is determined by the width of the hysteresis loop.
Rocznik
Strony
63--72
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
  • Department of Chemistry, Institute of Tourism and Geosciences, Ivano-Frankivsk National Technical University of Oil and Gas, 15, Karpatska str., Ivano-Frankivsk, Ukraine
  • Central Research Institute of the Military Forces of Ukraine, 28b, Povitroflotskyy pr., Kyiv, Ukraine
  • Department of Medical Informatics, Medical and Biological Physics, Pharmaceutical Faculty, Ivano-Frankivsk National Medical University, 12, Galytska str., Ivano-Frankivsk, Ukraine
  • Department of Petroleum Production, Institute of Petroleum Engineering, Ivano-Frankivsk National Technical University of Oil and Gas, 15, Karpatska str., Ivano-Frankivsk, Ukraine
autor
  • Department of Military Training, Institute of Petroleum Engineering, Ivano-Frankivsk National Technical University of Oil and Gas, 15, Karpatska str., Ivano-Frankivsk, Ukraine
Bibliografia
  • [1] S.D. De Groot, Quantitative assessment of the development of the offshore oil and gas industry in the North Sea, ICES Journal of Marine Science 53/6 (1996) 1045-1050.
  • [2] L. Bjerrum, Geotechnical problems involved in foundations of structures in the North Sea, Geotechnique 23/3 (1973) 319-358.
  • [3] S. Kyriakides, E. Corona, Mechanics of offshore pipelines: volume 1 buckling and collapse, Elsevier, 2007.
  • [4] S. Chandrasekaran, Dynamic analysis and design of offshore structures, New Delhi, Springer India, 2015.
  • [5] I. Adamiec-Wójcik, L. Brzozowska, Ł. Drąg, An analysis of dynamics of risers during vessel motion by means of the rigid finite element method, Ocean Engineering 106 (2015) 102-114.
  • [6] A. Torum, N.M. Anand, Free Span Vibrations of Submarine Pipelines in Steady Flows - Effect of Free- Stream Turbulence on Mean Drag Coefficients, Journal of Energy Resources Technology 107/4 (1985) 415-420.
  • [7] K.A. Anjinsen, Review of free spanning pipelines, Proceedings of the 5U' International Offshore and Polar Engineering Conference, Vol. 2: Golden (Colo), The Hague, 1995, 129-133.
  • [8] J.H. Prevost, Localization of deformations in elastic- plastic solids, International Journal for Numerical and Analytical Methods in Geomechanics 8/2 (1984) 187-196.
  • [9] L. Poberezhny, P. Maruschak, A. Hrytsanchuk, L. Poberezhna, O. Prentkovskis, A. Stanetsky, Impact of gas hydrates and long-term operation on fatigue characteristics of pipeline steels, Procedia Engineering 187 (2017) 356-362.
  • [10] A.V. Yavorskyi, M.O. Karpash, L.Y. Zhovtulia, L.Y. Poberezhny, P.O. Maruschak, Safe operation of engineering structures in the oil and gas industry, Journal of Natural Gas Science and Engineering 46 (2017) 289-295.
  • [11] YU.A. Horyayinov, Morski truboprovody, YU.A. Horyaynov, A.S. Fedorov, H.H. Vasylyevi (Eds.), M.: Nedra, 2001, 131 (in Russian).
  • [12] R.A. Aliev, Truboprovodnyj transport nefti i gaza, Ripol Klassik, 2013, 364 (in Russian).
  • [13] N. Hansen, Boundary strengthening in undeformed and deformed polycrystals, Materials Science and Engineering A 409/1-2 (2005) 39-45.
  • [14] YE.I. Kryzhanivskyy, Deformatsiyni efekty pry ukladenni truboprovodu na dno morya S-metodom, YE. I. Kryzhanivskyy, L. YA. Poberezhnyi, Naftova i hazova promyslovist 2 (2004) 35-39 (in Ukrainian).
  • [15] L. Poberezhnyi, P. Maruschak, O. Prentkovskis, I. Danyliuk, T. Pyrig, J. Brezinova, Fatigue and failure of steel of offshore gas pipeline after the laying operation, Archives of Civil and Mechanical Engineering 16/3 (2016) 524-536.
  • [16] E. Torselletti, L. Vitali, E. Levold, K.J. Mofk, Submarine Pipeline Installation JIP: Strength and deformation capacity of pipes passing over the S-lay vessel Stinger, Proceedings of the 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, 2006, 227-235.
  • [17] L.YA. Poberezhnyi, Urakhuvannya efektu Baushinhera pry proektuvanni morskykh truboprovodiv, Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch 4/9 (2003) 48-54 (in Ukrainian).
  • [18] Z. Meng, X. Li, M. Yang, Z. Wang, S. Yang, H. Zhang, Dynamic load analysis of underwater pipeline, Proceedings of the International Symposium on Structural and Technical Pipeline Engineering, Beijing, 1992, 201-208.
  • [19] C.E. Murphey, C.G. Langner, Ultimate Pipe Strength Under Bending, Collapse, and Fatigue, Proceedings of the Offshore Mechanics and Arctic Engineering Conference, 1985.
  • [20] R.T. Igtand, T. Moan, Reliability analysis of deep water pipelines during laying, for combined pressure, tension and bending loads, Proceedings of the 3rd International Offshore and Polar Engineering Conference, Vol. 4: Golden(Colo), Singapore, 1993, 613-621.
  • [21] T.G. Johns, D.P. McConnell, Pipeline design resist buckling in deep water, Oil and Gas Journal 82/30 (1984) 62-65.
  • [22] T.Y. Corbishley, Pipeline free spans - design and operational consideration, International Society of Underwater Technology 9/1 (1983) 14-19.
  • [23] H. Cui, J. Tani, Effect of boundary condition on the stability of a pipe conveying fluid, Transactions of the JSME 60/570 (1994) 462-466.
  • [24] V.S. Tikhonov, A.I. Safronov, Dinamika svobodno visyashchego proleta podvodnogo truboprovoda, Tezisy dokladov nauch.-tekhn. konf. Problemmy morekhodnykh kachestv sudov i korabel'noy gidromekhaniki (38 Krylov-skiye chteniya, 1997), Sankt-Peterburg, 1997, 150-151 (in Russian).
  • [25] YE.I. Kryzhanivskyy, L.YA. Poberezhniy, Ustanovka dlya kompleksnykh doslidzhen malotsiklovoi vtomi materialu morskikh truboprovodiv u robochikh seredovishchakh, Naft. i gazova promst. 5 (2001) 44¬45 (in Ukrainian).
  • [26] K.YA. Kapustin, M.A. Kamyshev, Stroitelstvo morskikh truboprovodov, M.: Nedra, 1982, 207 (in Ukrainian).
  • [27] YE.I. Kryzhanivskyy, L.YA. Poberezhnyi, Defor- matsiyna povedinka stali truvodu pri nizkomko- chastotiy vtomi, Zbim. nauk. prats' IV Mizhnarodnogo simpoziumu "ISTF-2002", Temopil': TDTU im. i. Pulyuya, Vol. 1, 2002, 296-300 (in Ukrainian).
  • [28] D.A. Kazakov, Modelirovaniye protsessov deformirovaniya i razrusheniya materialov i konstruktsiy, N.-Novgorod, D.A. Kazakov, S.A. Kapustin, YU. Korotkikh: Izd-vo Nizhegor. un-ta, 1999, 224 (in Russian).
  • [29] L.Y. Pobereznyi, L.Y. Poberezhna, P.O. Maruschak, S.V. Panin, Assessment of Potential Environmental Risks from Saline Soils Subsidence, in: IOP Conference Series: Earth and Environmental Science 50/1 (2017) 012046.
  • [30] V.T. Troshchenko, Mekhanicheskoye povedeniye materialov pri razlichnykh vidakh nagruzheniya, V.T. Troshchenko, A.A. Lebedev, V.A. Strizhalo, G.V. Stepnov, V.V. Krivenyuk, K.: Logos, 2000, 571 (in Russian).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c70f8cbd-383d-4f3c-85ba-4ae681128059
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.