PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Diffraction mechanism of five-port transmission gratings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper designs a five-port transmission grating under normal incidence. Rigorous coupled-wave approach is used to optimize the grating parameters. The energy of the grating is mainly dispersed to the 0th, ±1st and ±2nd orders. The efficiency of each diffraction order under both polarizations is close to 20%. The modal method is used to describe the propagation mechanism of the two polarized lights in the grating, and the diffraction behavior of the grating is analyzed. In addition, the grating has a wide range of incident characteristics and a large process tolerance. Therefore, this five-port beam splitter with a connecting layer will be a good polarization-independent beam splitting device.
Czasopismo
Rocznik
Strony
609--618
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
autor
  • School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
autor
  • School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
autor
  • School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
autor
  • School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
autor
  • School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
autor
  • School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
autor
  • School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
autor
  • School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
Bibliografia
  • [1] SUN S., CAO Y., CHEN C., FU G., WANG Y., XU X., A method for measuring the quality parameters of image intensifier based on projecting phase-shifting gratings, Optica Applicata 48(1), 2018, pp. 39–51, DOI:10.5277/oa180104.
  • [2] MOHD NAZAL N.A., LAI M., LIM K., GUNAWARDENA D.S., CHONG W., YANG H., AHMAD H., Demarcation energy properties of regenerated fiber Bragg grating sensors in few-mode fibers, Optica Applicata 48(2), 2018, pp. 263–271, DOI:10.5277/oa180209.
  • [3] CETIN R., AKIN T., Numerical and experimental investigation into LWIR transmission performance of complementary silicon subwavelength antireflection grating (SWARG) structures, Scientific Reports 9, 2019, article 4683, DOI:10.1038/s41598-019-41107-2.
  • [4] ZHENG X., WANG Q., ZHANG R., MA L., LUAN J., Effects of aspect ratio and metal layer thickness on demoulding of metal/polymer bilayer gratings during nanoimprinting, Scientific Reports 8, 2018, article 12720, DOI:10.1038/s41598-018-31194-y.
  • [5] REN Z., SUN Y., ZHANG S., LIN Z., WANG C., Tunable narrow band perfect metamaterial absorber based on guided-mode resonance, Modern Physics Letters B 33(16), 2019, article 1950171, DOI:10.1142/S0217984919501719.
  • [6] LI Y., LU P., ZHANG C., NI W., LIU D., ZHANG J., Sensing characterization of helical long period fiber grating fabricated by a double-side CO2 laser in single-mode fiber, IEEE Photonics Journal 11(3), 2019, article 6801608, DOI:10.1109/JPHOT.2019.2913700.
  • [7] FARTOOKZADEH M., Single-buried-layer reflection-mode metasurfaces for dual-band linear to circular polarization conversion, Modern Physics Letters B 32(23), 2018, article 1850274, DOI:10.1142/S0217984918502743.
  • [8] LI D., WANG X., LING J., YUAN Y., Multiwavelength achromatic microlens through phase compensation based on the subwavelength metallic nanostructures, Optics Communications 445, 2019, pp. 90–95, DOI:10.1016/j.optcom.2019.04.029.
  • [9] WEI LIU, XIAOHONG SUN, QINGBIN FAN, SHUAI WANG, YONGLE QI, The investigation of multi-channel splitters and big-bend waveguides based on 2D sunflower-typed photonic crystals, Superlattices and Microstructures 100, 2016, pp. 1291–1295, DOI:10.1016/j.spmi.2016.11.016.
  • [10] WEN J., DUAN L., FAN W., Influences of pump power and high-order dispersion on dual-pumped silicon-on-insulator micro-ring resonator-based optical frequency combs, Modern Physics Letters B 33(10), 2019, article 1950117, DOI:10.1142/S0217984919501173.
  • [11] LI L., HUANG T., ZHAO X., WU X., CHENG Z., Highly sensitive SPR sensor based on hybrid coupling between plasmon and photonic mode, IEEE Photonics Technology Letters 30(15), 2018, pp. 1364–1367, DOI:10.1109/LPT.2018.2847907.
  • [12] LING Q., GU Z., JIANG X., GAO K., Design of long period fiber grating surrounding refractive index sensor based on mode transition near phase-matching turning point, Optics Communications 439, 2019, pp. 187–192, DOI:10.1016/j.optcom.2019.01.060.
  • [13] CHEN Y., CHEN L., WANG X., LIU W., A novel metal/dielectric combined grating structure incorporating optically thin plasma metals with the properties of controllably polarization and spectral filtering, Optik 168, 2018, pp. 598–604, DOI:10.1016/j.ijleo.2018.04.124.
  • [14] FENG Y., LIU Y., SHI Y., TENG J., Tunable plasmonic filter based on graphene-layered waveguide, Modern Physics Letters B 32(8), 2018, article 1850110, DOI:10.1142/S0217984918501105.
  • [15] BAI B., DENG Q., ZHOU Z., Plasmonic-assisted polarization beam splitter based on bent directional coupling, IEEE Photonics Technology Letters 29(7), 2017, pp. 599–602, DOI:10.1109/LPT.2017.2675448.
  • [16] XIONG J., YU Y., YANG W., SUN C., ZHANG X., Crosstalk suppressed high efficient mode-selective four-wave mixing through tailoring waveguide geometry, IEEE Photonics Journal 11(1), 2019, article 6600408, DOI:10.1109/JPHOT.2019.2891335.
  • [17] REN J., SUN X., WANG S., A narrowband filter based on 2D 8-fold photonic quasicrystal, Superlattices and Microstructures 116, 2018, pp. 221–226, DOI:10.1016/j.spmi.2018.01.017.
  • [18] WANG S., WU H., ZHANG M., DAI D., A 32-channel hybrid wavelength-/mode-division (de)multiplexer on silicon, IEEE Photonics Technology Letters 30(13), 2018, pp. 1194–1197, DOI:10.1109/LPT.2018.2839533.
  • [19] LUO H., CHENG Y., Design of an ultrabroadband visible metamaterial absorber based on three-dimensional metallic nanostructures, Modern Physics Letters B 31(25), 2017, article 1750231, DOI:10.1142/S0217984917502311.
  • [20] CAO J., YANG G., WANG J., GAO S., LU Y., SUN R., YAN P., Enhanced optical absorption of monolayer WS2 using Ag nanograting and distributed Bragg reflector structures, Superlattices and Microstructures 112, 2017, pp. 218–223, DOI:10.1016/j.spmi.2017.09.030.
  • [21] REN Z., SUN Y., ZHANG S., ZHANG K., HU J., LIN Z., Active optical switches based on polarization-tuned guided-mode resonance filters for optical communication, Optics Communications 426, 2018, pp. 383–387, DOI:10.1016/j.optcom.2018.05.051.
  • [22] XU F., ZHU J., FAN S., QI Y., Control of slow light in three- and four-level graphene nanostructures, Modern Physics Letters B 33(20), 2019, article 1950226, DOI:10.1142/S0217984919502269.
  • [23] CAO H., ZHOU C., FENG J., LU P., MA J., Design and fabrication of a polarization-independent wide-band transmission fused-silica grating, Applied Optics 49(21), 2010, pp. 4108–4112, DOI:10.1364/AO.49.004108.
  • [24] FENG J., ZHOU C., WANG B., ZHENG J., JIA W., CAO H., LV P., Three-port beam splitter of a binary fused-silica grating, Applied Optics 47(35), 2008, pp. 6638–6643, DOI:10.1364/AO.47.006638.
  • [25] XIANG C., ZHOU C., JIA W., WU J., Five-port beam splitter of a single-groove grating, Chinese Optics Letters 16(7), 2018, article 070501, DOI:10.1364/COL.16.070501.
  • [26] MOHARAM M.G., POMMET D.A., GRANN E.B., GAYLORD T.K., Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach, Journalof the Optical Society of America A 12(5), 1995, pp. 1077–1086, DOI:10.1364/JOSAA.12.001077.
  • [27] BOTTEN I.C., CRAIG M.S., MCPHEDRAN R.C., ADAMS J.L., ANDREWARTHA J.R., The dielectric lamellar diffraction grating, Optica Acta: International Journal of Optics 28(3), 1981, pp. 413–428, DOI:10.1080/713820571.
  • [28] ZHAO H., Reverse design for diffraction gratings by modal method, Optik 157, 2018, pp. 621–627, DOI:10.1016/j.ijleo.2017.11.139.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c70e2ac6-e467-43d7-8e73-707845a0e2f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.