PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Hydrodynamic multidisciplinary optimization of a container ship and its propeller using comprehensive HPSOP code

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydrodynamic shape optimization plays an increasingly important role in the shipping industry. To optimize ship hull and propeller shapes for minimum total (friction+wave) calm-water resistance and maximum open water efficiency, respectively, the main particulars of a hull and propeller model are considered as design variables. The optimization problem is performed by using an integrated hull-propeller system optimization problem (HPSOP) code in a multi-level and multi-point methodology in early-stage ship design. Three numerical methods with variable fidelity are employed to carry out the hydrodynamic performance analysis of a ship’s hull and propeller. A ship and its propeller are selected as initial models to illustrate the effectiveness of the proposed optimization procedure. The numerical results show that the developed technique is efficient and robust for hydrodynamic design problems.
Rocznik
Strony
48--56
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Amirkabir University of Technology, Department of Maritime Engineering Hafez Ave., 15875-4413, Tehran, Iran
autor
  • Amirkabir University of Technology, Department of Maritime Engineering Hafez Ave., 15875-4413, Tehran, Iran
Bibliografia
  • 1. Benini, E. (2003) Multiobjective design optimization of B-screw series propellers using evolutionary algorithms. Marine Technology 40(4), pp. 229–238.
  • 2. Burger, C. (2007) Propeller performance analysis and multidisciplinary optimization using a genetic algorithm. Dissertation, Auburn University, Alabama.
  • 3. Day, A.H. & Doctors, L.J. (1997) Resistance optimization of displacement vessels on the basis of principal parameters. Journal of ship research 41(4), pp. 249–259.
  • 4. Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), pp. 182–197.
  • 5. Dejhalla, R., Mrša, Z. & Vuković, S. (2002) A genetic algorithm approach to the problem of minimum ship wave resistance. Marine Technology 39(3), pp. 187–195.
  • 6. Gaafary, M., El-Kilani, H. & Moustafa, M. (2011) Optimum Design of B-Series Marine Propellers. Alexandria Engineering Journal 50(1), pp. 13–18.
  • 7. Ghassemi, H. (2009) The effect of wake flow and skew angle on the ship propeller performance. Scientia Iranica 16(2), pp. 149–158.
  • 8. Ghassemi, H. & Kohansal, A. (2010) Hydrodynamic analysis of non-planing and planing hulls by BEM. Scientia Iranica. Transaction B: Mechanical Engineering 17(1), pp. 41–52.
  • 9. Ghassemi, H. & Zakerdoost, H. (2017) Ship hull–propeller system optimization based on the multi-objective evolutionary algorithm. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 231 (1), pp. 175–192.
  • 10. Ghose, J. & Gokarn, R. (2004) Basic ship propulsion. New Delhi: Allied Publishers.
  • 11. Grigoropoulos, G.J. & Chalkias, D.S. (2010) Hull-form optimization in calm and rough water. Computer-Aided Design 42 (11), pp. 977–984.
  • 12. Jeong, S. & Kim, H. (2013) Development of an efficient hull form design exploration framework. Mathematical Problems in Engineering, Article ID 838354, 12 pages.
  • 13. Jiang, J., Cai, H., Ma, C., Qian, Z., Chen, K. & Wu, P. (2018) A ship propeller design methodology of multi-objective optimization considering fluid–structure interaction. Engineering Applications of Computational Fluid Mechanics 12 (1), pp. 1–13.
  • 14. Kim, H.J., Choi, J.E. & Chun, H.H. (2016) Hull-form optimization using parametric modification functions and particle swarm optimization. Journal of Marine Science and Technology 21(1), pp. 129–144.
  • 15. Mirjalili, S., Lewis, A. & Mirjalili, S.A.M. (2015) Multi-objective optimisation of marine propellers. Procedia Computer Science 51, pp. 2247–2256.
  • 16. Park, J.H., Choi, J.E. & Chun, H.H. (2015) Hull-form optimization of KSUEZMAX to enhance resistance performance. International Journal of Naval Architecture and Ocean Engineering 7(1), pp. 100–114.
  • 17. Pluciński, M.M., Young, Y.L. & Liu, Z. (2007) Optimization of a self-twisting composite marine propeller using genetic algorithms. 16th International Conference on Composite Materials ICCM-16, Kyoto, Japan.
  • 18. Szelangiewicz, T., Wiśniewski, B. & Żelazny, K. (2014) Forecasting operating speed of the ship in the selected weather conditions. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 38 (110), pp. 89–95.
  • 19. Szelangiewicz, T. & Żelazny, K. (2015) An approximate method for calculating the mean statistical service speed of container ships on a given shipping line and its application in preliminary design. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 44 (116), pp. 34–42.
  • 20. Wikipedia (2018) List of largest container ships. [Online] Available from: https://en.wikipedia.org/wiki/List_of_largest_container_ships [Accessed: February 10, 2018]
  • 21. Xie, G. (2011) Optimal preliminary propeller design based on multi-objective optimization approach. Procedia Engineering 16, pp. 278–283.
  • 22. Zakerdoost, H., Ghassemi, H. & Ghiasi, M. (2013) Ship hull form optimization by evolutionary algorithm in order to diminish the drag. Journal of Marine Science and Application 12 (2), pp. 170–179.
  • 23. Zhang, B.-j., Ma, K. & Ji, Z.-s. (2009) The optimization of the hull form with the minimum wave making resistance based on Rankine source method. Journal of Hydrodynamics, Ser. B 21 (2), pp. 277–284.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c7087a1b-dba7-4a94-a982-debab35791d0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.