PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Method of Designing a Distortion Gauze for Testing a Boundary Layer Ingesting Fan

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As global trends aim to reduce emissions of pollutants, boundary layer ingesting (BLI) propulsions are attracting more and more attention. As such, N+2 generation aircraft with propulsion placed in the aft of the aircraft are gaining in popularity. The boundary layer is formed on the fuselage before entering the engine located in the aft of the aircraft. Due to significant difficulties in performing experimental tests of BLI propulsors with full-size aircraft, distortion gauzes are one of the methods to provide the desired air velocity profile at the inlet. This paper describes a novel method of designing such gauzes, a topic which is not well covered in the existing literature. In the first stage of the presented method, single orifices of different sizes were calculated using CFD tools. The relationship between their size and the gauze resistance coefficient was identified, making it possible to model the distortion gauze using porous media. An iterative approach was used to design a gauze that meets the requirements. This is, to our knowledge, the first distortion gauze design description where a porous media model has been used. Experimental tests demonstrated that the produced distortion gauze yields a velocity profile comparable to the desired one. This indicates the great potential of using the presented approach in further research on boundary layer ingesting propulsions. It offers an opportunity to reduce substantially both the costs of experimental research and the time required to design a distortion-tolerant fan.
Rocznik
Strony
1--17
Opis fizyczny
Bibliogr. 19 poz., fot., rys., wzory
Twórcy
  • Łukasiewicz Research Network - Institute of Aviation, al. Krakowska 110/114, 02-256 Warsaw, Poland
  • Łukasiewicz Research Network - Institute of Aviation, al. Krakowska 110/114, 02-256 Warsaw, Poland
  • Łukasiewicz Research Network - Institute of Aviation, al. Krakowska 110/114, 02-256 Warsaw, Poland
Bibliografia
  • [1] Hardin, L. W., Tillman, G., Sharma, O. P., Berton, J., Arend, D.J. “Aircraft System Study of Boundary Layer Ingesting Propulsion.” 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 30 July - 01 August 2012, Atlanta, Georgia.
  • [2] Uranga, A., Drela, M., Hall, D. K., Greitzer, E. M. “Analysis of the Aerodynamic Benefit from Boundary Layer Ingestion for Transport Aircraft.” AIAA Journal 56: 11 (2018): pp. 4271-4281
  • [3] Arend, D.J., Tillman, G., O’Brien, W. F. “Generation After Next Propulsor Research: Robust Design for Embedded Engine Systems.” 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 30 July - 01 August 2012, Atlanta, Georgia.
  • [4] Madani, V., Hynes, T. P. “Boundary Layer Ingesting Intakes: Design and Optimization.” Proceedings of XIX International Symposium on Air Breathing Engines (2009). ISABE Paper No. 2009-1346.
  • [5] Florea, R. V., Voytovych, D., Tillman, G., Stucky, M., Shabbir, A., Sharma, O., Arend, D. J. “Aerodynamic analysis of a boundary-layer-ingesting distortion-tolerant fan.” Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, June 3-7, 2013, San Antonio, Texas, USA.
  • [6] Hirt, S. M., Arend D. J., Wolter J. D., Johnson, A. M. “Development of a Flow Field for Testing a Boundary Layer-Ingesting Propulsor.” 53rd AIAA/SAE/ASEE Joint Propulsion Conference. July 2017.
  • [7] Prandtl, L. “The Attainment of a Steady Air Stream in Wind Tunnels.” Handbuch der Experimentalphysik. Vol. 4, Part 2, pp. 65-106. NACA Technical Memorandum 726, October 1933.
  • [8] Collar, A. R. The effect of a gauze on the velocity distribution in a uniform duct. Aeronautical Research Committee in London (1939).
  • [9] Simmons, L. F. G., Cowdrey, C. F., Sir Taylor, G. I. “Measurements of the aerodynamic forces acting on porous screens.” Reports and memoranda (Aeronautical Research Council (Great Britain)), no. 2276 (1945).
  • [10] Taylor, G. I., Batchelor, G. K. “The Effect of Wire Gauze On Small Disturbances in a Uniform Stream.” Quart. Journ. Mech. and Applied Math. Vol. II, Pt. 1 (1949).
  • [11] Davis, G. Non-uniform flow through wire screens. Ph.D. Dissertation, University of Cambridge, 1957.
  • [12] Owen, P. R., Zienkiewicz, H. K. “The production of uniform shear flow in a wind tunnel.” Journal of Fluid Mechanics, Volume 2, Issue 6, August 1957, pp. 521-531.
  • [13] Elder, J. W. “Steady flow through non-uniform gauzes of arbitrary shape.” Journal of Fluid Mechanics, vol. 5 (1959): pp. 355-368. DOI: 10.1017/S0022112059000258.
  • [14] Turner, J. T. “A computational method for the flow through non-uniform gauzes: the general two-dimensional case.” J. Fluid Mech. Vol. 36, part 2 (1969): pp. 367-383.
  • [15] Livesey, J. L., Laws, E. M. “Flow through non-uniform gauze screens.” J. Fluid Mech. Vl. 59, part 4 (1973): pp. 737-743.
  • [16] Idelchik, I. E. Handbook of hydraulic resistance: Coefficients of Local Resistance and of Friction. Begell House (1996), ISBN: 1567000746.
  • [17] Gunn, E. J., Hall, C. A. “Aerodynamics of Boundary Layer Ingesting Fans.” Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 1A: Aircraft Engine - Fans and Blowers. Düsseldorf, Germany. June 16-20, 2014. V01AT01A024. ASME.
  • [18] Balasubramanian, K., Turner, M. G., Siddappaji, K. “Novel Curvature-Based Airfoil Parameterization for Wind Turbine Application and Optimization.” ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition (pp. V009T49A020) (2017, June). American Society of Mechanical Engineers.
  • [19] Mahmood, S. M. H., Turner, M. G., Siddappaji, K. “Flow characteristics of an optimized axial compressor rotor using smooth design parameters.” ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition (V02CT45A018). American Society of Mechanical Engineers. (2016, June).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c70814c5-3907-4b01-973e-baa9c4d67fa3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.