PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of deep neural networks in a mobile application for classifying failures of an induction motor

Treść / Zawartość
Warianty tytułu
Konferencja
Computer Applications in Electrical Engineering (15-16.04.2019 ; Poznań, Polska)
Języki publikacji
EN
Abstrakty
EN
The article presents the use of a deep neural network to classify failures of an induction motor. Failures are related to inter-turn short-circuits occurring in the stator circuit. The classification is applied as a mobile application using the Intel Movidius Neural Compute Stick. The state assessment was made on the basis of a database containing the results of continuous wavelet analysis of the torque waveforms of the motor for a different number of shorted turns. Various database configurations for the neural network used in the application have been considered.
Rocznik
Tom
Strony
167--176
Opis fizyczny
Bibliogr. 8 poz., rys.
Twórcy
  • Poznan University of Technology
  • Poznan University of Technology
  • Poznan University of Technology
Bibliografia
  • [1] Albrecht P.F., Appiarius J.C., McCoy R.M., Owen E.L., Sharma D.K., Assessment of the Reliability of the Motors in Utility Applications – Updated, IEEE Trans. On Energy Conversion, Vol.1, No. 1, pp. 39–46.
  • [2] Pandarakone E.S., Mizuno Y., Nakamura H., Online Slight Inter-Turn ShortCircuit Fault Diagnosis Using the Distortion Ration of Load Current in a LowVoltage Induction Motor, IEEJ Journal of Industry Applications, Vol. 7, No. 6, pp. 473–478, doi: 10.1541/ieejjia.7.473.
  • [3] Hsu J.S., Monitoring of defects in induction motors through air-gap torque observation, IEEE Trans. On Industrial Applications, Vol. 31, No. 5, pp. 1016–1021.
  • [4] Cusido J., Romeral L., Ortega J.A., Rosero J.A., Garvia Espinosa A., Fault Detection in Induction Machines Using Power Spectral Density in Wavelet Decompositions, IEEE Trans. On Industrial Electronics, Vol. 55, No. 2, pp. 663–643.
  • [5] Grubic S., Aller J.M., Lu B., Habetler T.G., A survey on testing and monitoring methods for stator insulation systems of low-Voltage induction machines focusing on turn insulations problems, IEEE Trans. on Industrial Electronics, Vol. 55, No. 12, pp. 4127–4136.
  • [6] Alexandru M., Analysis of induction motor fault diagnosis with fuzzy neural network, Appl. Artif. Intell. 17 (2003), pp. 105-133.
  • [7] Su H., Chong K.T., Kumar R.R., Vibration signal analysis for electrical fault detection of induction machine using neural networks, Neural Comput. Appl. 20 (2007), pp. 183–194.
  • [8] Wenjun S., Siyu S., Rui Z., Ruqiang Y., Xingwu Z., Xuefeng C., A sparse autoencoder-based deep neural network approach for induction motor faults classification, doi.org/10.1016/j.measurement.2016.04.007.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6ffb8e6-118f-4895-a51d-dfb424a030b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.