PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Destruction mechanisms of Cu-ETP copper guides for sectional insulators of railway traction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the results of a research on the operational damage to sectional insulator guides made of hard electrolytic copper Cu-ETP (Electrolytic Tough Pitch Copper). The guides were used on various rail routes, in real conditions, on which the trains ran at maximum speeds between 40 and 120 km/h for periods of 6 or 12 months. The microstructure of the surface, the working layer of the guide, which contacts the graphite plate of the current collector and the cross-section of the guide in the place where it was damaged was examined using the Olympus light microscope. The analysis of the chemical composition in the EDS micro-regions was performed using the Zeiss Supra 53 scanning electron microscope (SEM), while the qualitative X-ray phase analysis was performed with the use of the Panalytical X'Pert diffractometer. Scratches and deformations of the surface layer characteristic of the phenomenon of friction caused by the current collector were observed in the microstructure of the damaged parts of the guides of section insulators. The effect of a very intense oxidation process was also observed, as well as the effects of an electric arc, which according to the author, is the factor that has the most destructive effect on the condition of the guides.
Rocznik
Tom
Strony
101--113
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
  • Faculty of Transport and Aviation Engineering, The Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice
Bibliografia
  • 1. Załącznik do zarządzenia Nr 14/2010 Zarządu PKP Polskie Linie Kolejowe S.A. z dnia 10 maja 2010 r. Wytyczne projektowania, budowy i odbioru sieci trakcyjnej oraz układów zasilania 2×25 kV AC dla linii kolejowych o prędkości do 350 km/h Iet-6. [In Polish: Annex to the order No. 14/2010 of the Management Board of PKP Polskie Linie Kolejowe S.A. of 10 May 2010. Guidelines for the design, construction and acceptance of the overhead contact line and 2 × 25 kV AC power supply systems for railway lines with a speed of up to 350 km/h Iet-6]. P. 88. Available at: https://www.plk-sa.pl/files/public/user_upload/pdf/Akty_prawne_i_przepisy/Instrukcje/Wydruk/Iet-6.pdf.
  • 2. BN-769317-109. Sieć trakcyjna kolejowa. Izolatory sekcyjne. Warszawa: Centralny Ośrodek Badań i Rozwoju Techniki Kolejnictwa/Instytut Kolejnictwa. [In Polish: Railway traction network. Section insulators. Warsaw: Central Research and Development Center of Railway Technology/Railway Research Institute].
  • 3. Szeląg Adam. 2005. “Problemy oddziaływania trakcji elektrycznej na środowisko”. Technika Transportu Szynowego 11-12: 46-57. ISSN: 1232-3829. [In Polish: “Problems of the influence of electric traction on the environment”].
  • 4. Gierlotka Stefan. 2008. „Łuk elektryczny i skutki jego działania na człowieka”. Elektro Info 9: 100-102. ISSN: 1642-8722. [In Polish: „Electric arc and its effects on humans”].
  • 5. Kano Ryota, Nemoto Yusuke, Maeda Yoshifumi, Yamamoto Shinji, Iwao Toru. 2020. „Arc temperature measurement with microsecond spectroscopic measurement”. Electrical Engineering in Japan 210: 29-36. ISSN: 0424-7760. DOI: https://doi.org/10.1002/eej.23259.
  • 6. Chapman David, Toby Norris. 2014. Copper for Busbars. Copper Development Association Publication No 22. Available at: https://leonardo-energy.pl/wp-content/uploads/2016/09/EIM6105-Szynoprzewody-wykonane-z-miedzi-poradnik-ang.pdf.
  • 7. PN-EN 1976:2013-04. Miedź i stopy miedzi. Wyroby odlewane z miedzi nie przerobione plastycznie. Warszawa: Polski Komitet Normalizacyjny. [In Polish: PN-EN 1976:2013-04. Copper and copper alloys. Copper-cast products not wrought. Warsaw: Polish Committee of Standardization].
  • 8. PN-EN 1652:1999. Miedź i stopy miedzi. Płyty, blachy, taśmy i krążki ogólnego przeznaczenia. Warszawa: Polski Komitet Normalizacyjny. [In Polish: PN-EN 1652:1999. Copper and copper alloys. General purpose plates, sheets, strips and pulleys. Warsaw: Polish Committee of Standardization].
  • 9. Benfoughal Abdeldjalil, Ali Bouchoucha, Youcef Mouadji. 2018. “Effect of electrical current on friction and wear behavior of copper against graphite for low sliding speeds”. UPB Scientific Bulletin, Series D: Mechanical Engineering 80(3): 117-130. ISSN: 1454-2358.
  • 10. Azevedo Cesar R.F., Amilton Sinatora. 2004. “Failure analysis of a railway copper contact strip”. Engineering Failure Analysis 11: 829-841. ISSN: 1350-6307. DOI: https://doi.org/10.1016/j.engfailanal.2004.03.003.
  • 11. Senouci A., H. Zaïdi, J. Frêne, A. Bouchoucha, D. Paulmier. 1999. „Damage of surfaces in sliding electrical contact copper/steel”. Applied Surface Science 144-145: 287-291. ISSN: 0169-4332. DOI: https://doi.org/10.1016/S0169-4332(98)00915-5.
  • 12. Wang Yian A., Lin Jinxu X., Yan Yu, Qiao Lijie J. 2012. “Effect of electrical current on tribological behavior of copper-impregnated metallized carbon against a Cu-Cr-Zr alloy”. Tribology International 50: 26–34. ISSN: 0301-679X. DOI: https://doi.org/10.1016/j.triboint.2011.12.022.
  • 13. Ding Tao, Chen Guangxiong, Wang Xin, Zhu Minghao, Zhang Weihua, Zhou Wenxiang X. 2011. “Friction and wear behavior of pure carbon strip sliding against copper contact wire under AC passage at high speeds”. Tribology International 44: 437-444. ISSN: 0301-679X. DOI: https://doi.org/10.1016/j.triboint.2010.11.022.
  • 14. Ma Xingchi C., He Guoqiu Q., He Dahai H., Chen Chengshu S., Hu Zhengfei F. 2008. “Sliding wear behavior of copper-graphite composite material for use in maglev transportation system”. Wear 265: 1087-1092. ISSN: 0043-1648. DOI: https://doi.org/10.1016/j.wear.2008.02.015.
  • 15. Chen Guangxiong X., Li Fengxue, Dong Lin, Zhu Minghao H., Zhou Z. R. 2009. “Friction and wear behaviour of stainless steel rubbing against copper-impregnated metallized carbon”. Tribology International 42(6): 934-939. ISSN: 0301-679X. DOI: https://doi.org/10.1016/j.triboint.2008.12.011.
  • 16. Zhao Han, Barber Gary C., Liu J. 2001. “Friction and wear in high speed sliding with and without electrical current”. Wear 249(5-6): 409-414. ISSN: 0043-1648. DOI: https://doi.org/10.1016/S0043-1648(01)00545-2.
  • 17. Holm Ragnar. 1967. Electric Contacts. Fourth ed. Berlin: Springer. ISBN: 978-3-540-03875-7.
  • 18. Ding Tao, Chen Guangxiong, Bu Jun, Zhang Weihua. 2011. “Effect of temperature and arc discharge on friction and wear behaviours of carbon strip/copper contact wire in pantograph–catenary systems”. Wear 271: 1629-1636. ISSN: 0043-1648. DOI: https://doi.org/10.1016/j.wear.2010.12.031.
  • 19. Filice Luigino, Fabrizio Micari, Stefania Rizzuti, Domenico Umbrello. 2007. „A critical analysis of the friction modeling in orthogonal machining”. International Journal of Machine Tools & Manufacture 47: 709-714. ISSN: 0890-6955. DOI: https://doi.org/10.1016/j.ijmachtools.2006.05.007.
  • 20. Bouchoucha Ali, Said Chekroud, Daniel Paulmier. 2004. “Influence of the electrical sliding speed on friction and wear processes in an electrical contact copper – stainless steel”. Applied Surface Science 223: 330-342. ISSN: 0169-4332. DOI: https://doi.org/10.1016/j.apsusc.2003.09.018.
  • 21. Bouchoucha A., E.K. Kadiri, F. Robert, H. Zaïdi, D. Paulmier. 1995. „Metals transfer and oxidation of copper-steel surfaces in electrical sliding contact”. Surface and Coatings Technology 76-77: 521-527. ISSN: 0257-8972. DOI: https://doi.org/10.1016/0257-8972(95)02603-7.
  • 22. Szadkowski Marek. 2016. Zagrożenie porażeniem łukiem elektrycznym w instalacjach nn I SN. Stowarzyszenie Elektryków Polskich o. Tarnów [In Polish: Electric arc hazard in LV and MV installations. Association of Polish Electrical Engineers, Tarnów]. Available at: http://www.sep-tarnow.com.pl/files/Zagrożenie porażeniem łukiem-elektrycznym w instalacjach-nn-i.pdf.
  • 23. Jüttner Burkhard. 2001. „Cathode spots of electric arcs”. Journal of Physics D: Applied Physics 34: R103. DOI: https://doi.org/10.1088/0022-3727/34/17/202.
  • 24. Anders André. 2005. „The fractal nature of vacuum arc cathode spots”. IEEE Transactions on Plasma Science 33(5): 1456-1464. ISSN: 0093-3813. DOI: https://doi.org/10.1109/TPS.2005.856488.
  • 25. Daadler J.E. 1981. „Cathode spots and vacuum arcs”. Physica B+C 104(1-2): 91-106. ISSN: 0378-4363. DOI: https://doi.org/10.1016/0378-4363(81)90040-1.
  • 26. Rohde Volker, Martin Balden. 2016. „Arc erosion of full metal plasma facing components at the inner baffle region of ASDEX Upgrade”. Nuclear Materials and Energy 9: 36-39. ISSN: 2352-1791. DOI: https://doi.org/10.1016/j.nme.2016.09.006.
  • 27. Lin Xiu-Zhou, Min-Hao Zhu, Ji-Liang Mo, Guang-Xiong Chen, Xue-Song Jin, Zhong-Rong Zhou. 2011. „Tribological and electric-arc behaviors of carbon/copper pair during sliding friction process with electric current applied”. Transactions of Nonferrous Metals Society of China 21: 292-299. ISSN: 1003-6326. DOI: https://doi.org/10.1016/S1003-6326(11)60712-7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6fba934-4021-4adf-9a53-f89f8a78539e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.