
1. Introduction

Generalisation of map content is subject to 
specific rules and is one of the biggest challeng­

es of cartography. This problem has puzzled 
researchers since E. von Sydow defined the 
three reefs of cartography in Drei Karten-Klippen 
in 1866. The problem of generalisation has not 
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Abstract. The present article is another attempt to adapt map geometry to automatic digital cartography. 

The paper presents a method of digital polyline generalisation that uses contractive self-mapping. It is a method 
of simplification, not just an algorithm for simplification. This method in its 1996 version obtained a patent 
entitled “Method of Eliminating Points in the Process of Numerical Cartographic Generalisation” – Patent 
Office of the Republic of Poland, No. 181014, 1996. The first results of research conducted using the presented 
method, with clearly defined data (without singular points of their geometry), were published in the works of 
the authors in 2021 and 2022.

This article presents a transition from the DLM (Digital Landscape Model) to the DCM (Digital Cartographic 
Model). It demonstrates an algorithm with independent solutions for the band axis and both its edges. The 
presented example was performed for the so-called polyline band, which can represent real topographic linear 
objects such as rivers and boundaries of closed areas (buildings, lakes, etc.). An unambiguous representation 
of both edges of the band is its axis, represented in DLM, which can be simplified to any scale. A direct 
consequence of this simplification is the shape of the band representing the actual shape of both edges of the 
object that is classified in the database as a linear object in DCM.

The article presents an example performed for the so-called polyline band, which represents real topographic 
linear objects (roads, rivers) and area boundaries. The proposed method fulfils the following conditions: 
the Lipschitz condition, the Cauchy condition, the Banach theorem, and the Salichtchev’s standard for object 
recognition on the map. The presented method is objective in contrast to the previously used approximate 
methods, such as generalisations that use graph theory and fractal geometry, line smoothing and simplification 
algorithms, statistical methods with classification of object attributes, artificial intelligence, etc. The presented 
method for changing the geometry of objects by any scale of the map is 100% automatic, repeatable, and 
objective; that is, it does not require a cartographer’s intervention.

Keywords: digital generalisation, contractive self-mapping, Salichtchev’s minimum measures, geometry of 
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been solved yet. Automating the objective 
generalisation of object geometry and gener­
alising topographic map content is a problem 
that is and will remain without a satisfactory 
solution (Maudet et al., 2017; Zhou et al., 
2018).

In the 1960s, the first attempts were made to 
automate the process of generalisation in order 
to ensure its objectivity. Many strategies have 
been proposed for implementing the generalisa­
tion process (Brassel & Weibel, 1988; McMa­
ster & Shea, 1992). The first algorithms for 
automatic cartographic generalisation (Salich­
tchev, 1967; Yan, 2019) that used computer 
technology were developed, among others, by 
Perkal (1966), Tobler (1966), Lang (1969). Ini­
tially, research focused on generalising lines 
(Pannekoek, 1962; Perkal, 1958; Srnka, 1970; 
Tobler, 1964;). Research on simplifying line 
geometry in computer cartographic general­
isation has been conducted for many years 
(Kozioł, 2013). Simplification algorithms have 
been developed, among others, by McMaster 
(1987), Bjørke (1996, 2003), Chrobak (1999, 
2003, 2007), Chrobak et al. (2017), Opheim 
(1982), Robinson et al. (1988), Visvalingam 
and Whyatt (1991), Weibel (1996). A compre­
hensive overview of the development of algo­
rithms, starting with Perkal’s work (1966), was 
provided by Li (2007). Every year, numerous new 
line generalisation algorithms are developed, 
and many existing ones are modified. One 
example is the Douglas-Peucker algorithm from 
1973 (Douglas & Peucker, 1973; Li, 2007), 
which was the basis for various modifications 
of the line generalisation algorithm (Berg et al., 
1995, 1998; Li & Openshaw, 1992; McMaster, 
1986; McMaster & Shea, 1992; Muller & Mou­
wes, 1990; Saalfeld, 1999; Visvalingham & Whyatt, 
1990; Wang & Muller 1998; White, 1985; Zheng 
& Tian, 1997). The purpose of each of these 
algorithms was to reduce the number of points 
of the line and to simplify its original shape.

Generalisation algorithms have also been 
supplemented with graphs theories and fractal 
geometry (Arora et al., 2018; Dupuis et al., 
2023; Wu, 1997).

Another group of line algorithms is for 
smoothing a line. Various techniques have 
been employed such as Gaussian convolution, 
Fourier transform (Boutoura, 1989; Plazanet 
et al., 1995), wavelet transform (Balboa & Lo­
pez, 2000), snakes (Borkowski & Keller, 2003; 

Burghardt & Meier, 1997, 2005; Kass et al., 
1987; Trinder, 1995).

New solutions to the problem of simplifying 
objects on maps are still appearing in the lite­
rature. In 2020, Kronenfeld et al. developed an 
algorithm to simplify polylines, Area Preserving 
Segment Collapse (APSC), that preserves the 
area of the object. Procedurally, APSC is similar 
to Visvalingam and Whyatt’s (1993) so-called 
effective area (VEA) algorithm, but instead of 
deleting a single vertex at each step, two ver­
tices are removed and one new vertex is added. 
Yan et al. (2022, 2023) developed a formula to 
express the change in spatial similarity that 
follows the change in the scale of the map. 
The proposed quantitative method provides 
the basis for using spatial similarity as a limita­
tion during the generalisation of the road net­
work, through the control of generalisation 
procedures and the assessment of the quality 
of generalisation.

Statistical methods used in generalisation 
are based on the selection of attributes con­
cerning semantic, geometric, and topological 
properties (Ajdacka & Karsznia, 2022; Cebrykow, 
2017; Jiang & Claramount, 2004; Karsznia 
et al., 2022; Li & Choi, 2002; Sester et al., 1998; 
Touya, 2007; Weiss & Weibel, 2014; Zheng 
et al., 2021; Zhang, 2004). They are necessarily 
burdened with a significant component of sub­
jectivity.

In the last 20 years, artificial intelligence has 
also been used in the generalisation of objects 
on maps (Balboa & Lopez, 2008; Courtial et al., 
2020; Du et al., 2022; Jepsen et al., 2022; 
Karsznia et al., 2022; Lagrange et al., 2000; 
Touya et al., 2019; Werschlein & Weibel, 1994; 
Xiao et al., 2023; Yan, 2023; Zhou & Li, 2014). 
Machine learning supports the application of 
generalisation algorithms to large sets, allows 
for the use of new test areas and experimenting 
with various machine learning models.

As Sester et al. (2018) have observed, how­
ever, this research, although interesting, only 
confirms that the use of machine learning in 
cartography is possible. Research so far has 
focused on topographic databases and large­
-scale maps and has not yet been used more 
widely.

The increasing computing capabilities of 
computers and the rapid development of GIS 
technologies have allowed cartographers to 
make various attempts at systematising and 
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clarifying the principles of generalisation which 
allow for greater objectivity and repeatability in 
mapping. GIS software providers such as ESRI, 
Intergraph, Spatial, Laser-Scan, Axes Systems 
AG, and others add to their products proce­
dures and functions that enable generalising 
objects on the map. Examples of such general­
ization operators include algorithms for the 
simplification, smoothing, aggregation, amal­
gamation, merging, collapse, refinement, exag­
geration, enhancement and displacement of 
cartographic features (McMaster & Shea, 1992).

In computer cartography, many rules for 
simplifying lines have been developed, but 
these solutions are most often to some extent 
subjective. Object simplification methods used 
in GIS, such as those by Douglas, Peucker, 
Jenks, Lang or Reumann-Witkam and others, 
as well as those based on fractal theory or arti­
ficial intelligence, return the result after a few 
or a dozen or so iterations.

Generalisation services can be used in vari­
ous application scenarios, for example as an 
intermediary software component that extends 
an Internet map with adaptive zoom, or as 
a stand-alone service that supports topogra­
phic production of maps developed by national 
cartographic agencies (Burghardt, 2005; Burg­
hardt et al., 2005; Burghardt & Shmid, 2009; 
Neun et al., 2009).

Manual, semi-automatic, and automatic gen­
eralisation were compared in detail by Li and 
Su (1995). Automatic generalisation has become 
an effective way to create cartographic docu­
ments at different scales based on a single 
spatial database containing information of high 
spatial timeliness and accuracy. National 
Mapping Agencies (NMA) are involved in the 
process of map generalisation, also for the 
purpose of seeking financial gains. Scientists 
agree on the need for complete automation of 
the generalisation process (among others, 
Burghardt et al., 2008; Chaundhry & Mackaness, 
2008; Kilpeläinen & Sarjakoski, 1995; Liu & Li, 
2019; Regnauld, 2015; Stoter et al., 2009a, 
2009b, 2016; Weibel, 1995; Weiss & Weibel, 
2014).

In cartography, generalisation is the most 
critical transformation, resulting in the modifi­
cation of the shape of objects and – some­
times – partial or complete elimination of spatial 
information. Generalisation modelling aims to 
control the process of generalisation and has 

been a field of extensive research since 1990 
(Blana et al., 2023; Jiang et al., 2013; Mac­
kaness et al., 2007; Weibel & Dutton, 1998). 
Assessment of generalisation quality has been 
identified as an inherent part of generalisation 
models since the first attempts in this regard 
(João, 1998; McMaster & Shea, 1992; Weibel, 
1995).

The applied method of changing the geometry 
of objects to any map scale is 100% automatic. 
It is the first simplification method, not just an 
algorithm for simplification. This method depends 
on the fulfillment of the following conditions:

– Lipschitz’s condition p > h for contraction trian­
gles created on a polyline in a binary tree system,

− K. A. Salichtchev’s (p>h, where: p = 0.7M 
and h = 0.3M in [mm]) recognisability of the 
measures of triangles defined in the metric space. 

The recognition norm introduced into the 
process of generalisation gives positive results 
as it causes the smallest possible changes in 
the geometry of the polyline (Chrobak, 1999, 
2003, 2007; Chrobak et al., 2017).

The article presents a scheme of stages of 
automatic data generalisation illustrated with an 
example of a polyline that is ordered in a binary 
tree structure and belongs to the metric space. 
For polyline simplification tests, random scales 
were selected, in which simplified object geo­
metry was obtained automatically (Banasik 
et al., 2022; Barańska et al., 2021). Mathema­
tical theorems are applied in the process of 
simplifying the geometry of an object and after 
its verification process. The accuracy of ge­
neralisation of the geometry of objects on the 
map after simplification is verified by the recog­
nition metric of Salichtchev (2003).

The research was concluded with a sample 
generalisation of real data (topographic data­
base BDOT10k) for the Jałowica River. It was 
proved that it is possible to automatically 
simplify the shape of a polyline by significantly 
reducing the number of its points. Simplifica­
tion is achieved by reducing polyline points 
that are not recognisable to the human eye. 
The applied generalisation method is charac­
terised by the use of original, real points of 
a polyline (from a topographic database) and 
not creating new, non-existent points in the 
process of generalisation of a polyline. The only 
value determining the degree of simplification 
is the minimal recognisability of the shape of 
the polyline, which results from the resolution 
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capabilities of the human eye. This makes it 
possible to generalise a polyline at the target 
scale of the map, including non-standard scales. 
This method can be used to change the geo­
metry of polyline-shaped objects.

2. Definitions of mathematical spaces 
and theorems used in the publication 
for automatic generalisation

In the subsequent sections, the following 
theorems in the field of mathematical spaces 
are used, as well as concepts that can be 
employed in automatic generalisation: 

1) A necessary and sufficient condition for 
a number a to be the limit of a sequence (an) is 
that for each number ε > 0 there exists such 
a number n0 that for natural numbers m,k > n0 
there exists the inequality |am - ak| < ε (Cauchy 
condition) (Bronsztejn et al., 2011),

2) Metric space – a set with a given metric, 
i.e. a function that determines the distance 
between each pair of elements of this set. Metric 
spaces form the most general class of sets 
which use the concept of distance modelled 
on the distance known from Euclidean spaces 
(line, plane or three-dimensional space) (Bron­
sztejn et al., 2011),

3) Banach’s fixed-point theorem (the con­
traction theorem) (Dziubiński, 1982, p. 535),

4) Lipschitz contraction or contraction map­
ping – the transformation of f from metric space 
(X,gx) into metric space (Y) whose real constant 
for α ∈ (0,1) is such that for any (x1,x2) ∈ X 
there exists the inequality: gy(f(x1), f(x2)) ≤ αgx 
(x1,x2).

In the works by Barańska et al. (2021) and 
Banasik et al. (2022), of which the present paper 
is a continuation, three types of triangles were 
used:

1) TB – base triangles, constructed from 
points of the object in different coordinate sys­
tems, transformed to a single geodetic coordi­
nate system. They are the basis for creating 
the first TK contraction triangles on the left and 
right leg of TB. The distinguishing feature of 
these triangles are their bases, which are at 
the same time the longest side of TK triangles 
because they connect the beginning and the 
end in each section.

2) TK – contraction triangles, built in polyline 
envelopes, as representations of contractive 
self-mapping, whereby:

− The first TK triangle of each polyline enve­
lope in contractive self-mapping has the longest 
base and height; they meet the condition that 
the base is greater than the height,

− Subsequent TK triangles with a common 
side are created according to the binary tree 
scheme. Their sides are shorter than the sides 
of the preceding triangles.

3) TG – a limiting triangle, or a special con­
traction triangle whose height is zero. The limiting 
triangle ends the process of contractive self­
-mapping.

3. Adjusting polyline geometry  
to automatic generalisation at any scale 
s < 1

In the automatic generalisation of linear ob­
jects, the sequences of geodetic points that 
form the polyline must be converted from 
Euclidean to metric space. This ensures that 
in the process of simplifying the polyline to the 
s < 1 scale, its continuity will be maintained. 
Maintaining continuity also determines the un­
ambiguous result of the simplification process. 
Distances between object points are measured. 
They are used to verify the recognisability of an 
object, after applying contractive self-mapping 
and comparing lengths with the metric of Sa­
lichtchev (2003). Contraction triangles created 
in a binary tree system on a polyline have the 
bases and heights measured to verify the con­
dition of the Lipschitz contraction. For each 
contraction triangle built on a polyline, it is con­
firmed whether the base of the triangle is 
greater than its height. In contractive self-map­
ping, the triangles formed on the original polyline 
are verified by the recognition norm defined by 
Salichtchev (2003). The result of simplification 
with self-contractive mapping is verified by the 
source data of the polyline with the imposed 
condition of Lipschitz contraction. In turn, a pol­
yline generalised to the s < 1 scale is verified 
by the recognition norm of Salichtchev. This is 
done by examining the polyline result after 
applying contractive self-mapping to polyline 
points for the s = 1 scale. 

4. Transformation of polyline data from 
Euclidean to metric space

The process of automatic digital simplifica­
tion of the cartographic geometry of an ordered 
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polyline – PO in 0 < s < 1 scales requires that, 
in contractive self-mapping performed accord­
ing to the principle of “from the general to the 
specific”, the coordinates of the points be iden­
tical to the source data. In the metric space of 
the polyline, the continuity of point sequences 
in contractive self-mapping guarantees a single 
result. This was shown in article by Banasik et 
al. (2022). In comparison to approximate me­
thods, the result of a simplified object obtained 
by means of contractive self-mapping gives 
a single result consistent with the source data. 
The justification for the comparison of results 
is set out in article by Barańska et al. (2021). 
Positive results of the study on the exact method 
used for polylines made it possible to apply it 
to simplify a polyline band (LRA)O. Such a band 
consists of the left edge – LO and the right 
edge – RO (both are polylines). The vertices of 
the LO and RO edges are used to generate the 
AO band axis. Therefore, the base triangles 
TBO

L, TBO
R can be built on either of the edges 

or on the axis as a PO polyline. This operation 
does not affect the condition of Lipschitz con­
traction. A set of TK triangles of PO polyline of 
contractive self-mapping, when s = 1, is a gen­
eralisation standard for the s < 1 scale. This 
way, the sides of generalised polylines are 
verified by measures of distances between the 
vertices of the source polylines.

4.1. The concept of polyline band and its 
generalisation

The term polyline band is understood as 
three polylines of the same shape (Figure 1). 
Two of them are its natural edges – left (L) 
and right (R). The third polyline is a specially 
created band axis (A). Each polyline has “n” 
matching vertices: (L1,R1,A1), (L2,R2,A2),…
(Ln,Rn,An). The axis (A) of the web is secondary 
in relation to the edges (L) and (R) because 
the coordinates of the axis vertices are derived 
from the coordinates of the edge vertices. The 
band (Li,Ri,Ai) defined in this way can be a flat 
model of a real topographic object, e.g. a road, 
river, etc. The band includes a special type of 
vertices: the so-called geodetic points, which 
include the vertices of the ends of the band 
and other vertices whose location is independ­
ent of the results of simplification because it is 
not changed in the process. The width of the 
band is determined by 2d1, 2d2,…2dn values, 
whereby the successive di values can differ 
(Figure 1).

Such a band is recorded on the plane with 
X,Y coordinates (m) of the vertices of both edges 
and their numbers, for example:	

Vertex 1:	 L1	 XL = 0.0	 YL = -4.0
	 R1	 XR = 0.0	 YR = 4.0
Vertex 2:	 L2	 XL = 19.0	 YL = 1.0
	 R2	 XR = 15.0	 YR = 7.9

Figure 1. Sample band (L,R,A)i with vertices i = 1, 2…n (black: primary band; red: simplified band)
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Vertex 3:	 L3	 XL = 28.1	 YL = 17.2
	 R3	 XR = 21,0	 YR = 19.8

Vertex n-1:	 Ln-1	 XL = 15.4	 YL = 131.8
	 Rn-1	 XR = 12.5	 YR = 127.8
Vertex n:	 Ln	 XL = 0.0	 YL = 137.0
	 Rn	 XR = 0.0	 YR = 133.8

The coordinates XA,YA of the i-th vertex of 
the band axis (A) are calculated from the coordi­
nates XL,YL,XR,YR of the corresponding vertices 
of both edges, according to the formula (1):

(1)

The band is generalised according to the fol­
lowing rules:

1) The band defined by the edges (L) and 
(R) becomes reduced to the axis (A). The axis 
of the band represents the band in the process 
of its simplification.

2) The band axis should be generalised to 
the new s < 1 scale in accordance with the prin­
ciples of generalising a polyline set out in (Ba­
nasik et al., 2022). These include: identification 
of singular vertices of the polyline, construction 
of its binary tree, simplification of the polyline 
according to the given scale of reduction.

3) The identified singular vertex of the axis 
does not meet the Lipschitz condition neces­
sary for contractive self-mapping (Barańska 
et al., 2021). Such a vertex, together with the 
neighbouring vertices, forms a so-called singular 
triangle. The vertices of the singular triangle 
are excluded from the subsequent stages of 
generalisation and are given a status similar to 
the status of geodetic vertices.

4) The construction of the binary tree of a pol­
yline is performed only on those polyline sub­
-segments that are located between geodetic 
or singular vertices. The binary tree structure 
contains the metric information necessary to 
simplify the polyline. The branches of the binary 
tree are triangles formed from the vertices of 
the polyline, starting from the base triangle and 
ending with the side of the polyline as a zero­
-height triangle, maintaining the Lipschitz con­
dition (Barańska et al., 2021).

5) The simplification of the fragments of the 
polyline is carried out according to the recog­
nisability conditions specified by Salichtchev 
(2003) for a given scale of reduction (M) The 

shape of the polyline is changed by removing 
some polyline vertices. The polyline vertices that 
did not meet the recognisability conditions, 
i.e. the condition of the minimum height of the 
vertex above the base of the triangle from the 
binary tree (hmin = 0.3M), or the condition of the 
minimum triangle base length (pmin = 0.7M), 
are removed.

6) The simplified polyline becomes the axis 
of the simplified band. To obtain a generalised 
band, the vertices of both edges of the band 
need to be reconstructed. The reconstruction 
only applies to the vertices remaining in the 
axis after its simplification.

As a result of simplifying the band axis from 
the original polyline (A), a polyline with a reduced 
number of vertices (Ai) remains (Figure 1). 

Leaving or removing the k-th vertex (Ak) of the 
axis after its simplification means at the same 
time leaving or removing the corresponding 
vertices of both edges: (Lk) and (Rk). In Figure 1, 
the axis vertex A2 was removed, and as a result, 
the generalised ribbon retains the vertices L1, 
R1 (as fixed geodetic vertices) and the vertices 
L3, R3. The vertices L2, R2 were also removed 
due to the deletion of the corresponding A2. 
After generalisation, the original band was sim­
plified from (L1,R1,A1), (L2,R2,A2), (L3,R3,A3),… 
(Ln,Rn,An) to (L1,R1,A1), (L3,R3,A3),… (Ln,Rn,An).

As a result of the generalisation of the band 
to the s < 1 scale, the width of the band will be 
smaller. If the width is not recognisable and the 
band must be visible, it should be marked 
using a conventional symbol.

Figure 2 (a–c) illustrates an example of sim­
plification of a 20-vertex ribbon (the numbers 
of left and right edge vertices are marked on the 
band axis). Vertices 1 and 20 are the vertices 
of the endpoints of the band, and vertex 10 is 
a geodetic (fixed) vertex, the furthest from the 
base of the TB triangle. All these vertices (marked 
in red) are not simplified due to their status and 
cannot be omitted from the band geometry. 
The band was generalised by simplifying its 
axis. As a result of the phase of identification of 
singular vertices, two such vertices were found: 
4 and 18. Together with the neighbouring verti­
ces 3 and 5, 17 and 19, they formed so-called 
singular triangles (Figure 2b). Singular vertices 
do not meet the conditions of contractive self­
-mapping (Barańska et al., 2021) and are there­
fore excluded from the successive stages of 
simplification, as are the geodetic vertices.
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Figure 2. Examples of successive stages of band generalisation (L1-20, R1-20, A1-20)i with vertices  
i = 1,2…20 from 1:1 scale to 1:50 scale: a) the ribbon before generalisation (in black – the axis and edges  

of the band, in red – geodetic vertices); b) the band with localised singular vertices (in green);  
c) the band after generalisation (in red – band axis, blue – band edges)

a)

b)

c)
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The subsequent stages of the axis general­
isation process, i.e. the construction of a binary 
tree and the simplification of TK triangles ac­
cording to Salichtchev criterion of recognisability 
(for the adopted scale of reduction s = 1:50) 
are carried out on fragments between geodetic 
and singular vertices. These fragments are 
1–3, 5–10, and 10–16. The values adopted as the 
criterion of recognisability are: for the triangle 
base pmax = 0.7M, and for the triangle height 
hmax = 0.3M, where M is the reduction value 
(in this case M = 50). The result of simplifying the 
shape of the above-mentioned axis fragments 
is the rejection of vertices 2, 6, 7, 9 and all ver­
tices from 11 to 15 (Figure 2c). From the twenty 
vertices of the original band axis, after it was 
reduced 50-fold, 10 vertices remained after sim­
plification. Both edges of the band after gener­
alisation were recreated from the axis vertices 
that remained after simplification. The shape 
of the band after simplification is shown in Fi­
gure 2c. The assessment of the accuracy of 
the achieved simplification was carried out 
using the method proposed in Banasik et al. 
(2022), by analysing the heights of the rejected 
vertices in triangles. The standard deviation 
values for simplified fragments on the left and 
right edges and on the axis were respectively: 
δ1-3 = (4.30; 3.41; 3.85), δ5-8 = (1.31; 2.86; 1.77), 
δ8-10 = (1.24; 2.73; 2.08), δ10-17 = (4.06; 3.51; 
3.75). These values are less than the limit values 
for the recognisability of length according to the 
Salichtchev norm, which are equal to pmax = 35 

and hmax = 15, respectively, in the case of re­
duction to a scale of 1:50.

5. Description of the generalisation  
of the Jałowica River

The Jałowica River is a tributary of Konradka, 
which is a left tributary of the Biała Lądecka 
River. These tributaries belong to the drainage 
basin of the Nysa Kłodzka River in Poland. The 
Jałowica River has a south-north orientation, from 
the source (ϕ = 50°56′06.32″, λ = 15°45′04.96″) 
to the mouth (ϕ = 50°55′04.69″, λ = 15°49′13.62″) 
(Figure 3ab).

In the BDOT10k (Rozporządzenie Ministra 
Rozwoju, Pracy i Technologii [MRPiT], 2021) 
topographic database, the location of this river 
was defined by a set of points that mark river 
bends. The x,y coordinates of these points are 
given in the PL-1992 system (EPSG 2180, 
2022). These points form polylines that are the 
axes of polyline bands (left and right banks of 
the river and its tributaries). For generalisation 
purposes, the axes of these bands are marked 
as follows (Figure 3c):

− G polyline – the main current of the river, 
consisting of 380 points,

− D1, D2, D3, D5, D6 polylines – left tributaries 
of the river, consisting of 5–52 points,

− D4 polyline – the right tributary of the river 
– a polyline consisting of 134 points.

The total number of points in all polylines is 650. 
A detailed description of all the above-mentioned 
polylines can be found in Table 1.

Figure 3. Location of the Jałowica River: a) on the map of Poland, b) in the southern part of the Lower Silesia 
voivodeship), c) division of the river into subsequent polylines (base map: geoportal.gov.pl, 2023)

a) b) c)
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Each of the polylines was generalised in se­
lected scales from 1:10,000 to 1:100,000. As 
a result of the generalisation and reduction of 
the number of polyline points, its shape was 
simplified. According to the principles of this 
generalisation method, all points were subject 
to reduction apart from the ends of the polyline 
and other so-called geodetic points (Banasik 
et al., 2022). Polyline G has six such geodetic 
points; they are simultaneously the ends of the 

tributaries of the river (D1-D6). Detailed results 
of generalisation are given in Table 2. A visu­
alisation of the generalised polylines is shown 
in Figure 4.

Table 2 shows that the higher the number in 
the scale denominator, the greater the reduc­
tion of polyline points. For the smallest scale, 
1:100,000, it reaches values from 70% to 90%. 
At this scale, the longest polyline (G), originally 
consisting of 380 points, was simplified to a poly­
line of 38 points (reduction by 90%). The greatest 
reduction in the number of points occurred in 
generalisations at the 1:25,000 scale and at 
the 1:50,000 scale. This is the result of the use 
of Salichtchev’s recognition norms (0.7M and 
0.4M, where M – the denominator of the scale), 
which are the only values determining the sim­
plification of the shape of the polylines (Banasik 
et al., 2022). In the first case, there is a 2.5-fold 
reduction; in the second – 2-fold.

The shortest polyline D5, originally consisting 
of 7 points, was reduced in a scale of 1:75,000 
(and smaller scales) to a segment with an initial 
and final point. This section is 152 m long. On 
a map with a scale of 1:75,000, it will be 2 mm 
long, which allows for it to be recognised. This 
section will also be recognisable at the scale of 
1:100,000.

When assessing the shape of generalised 
polylines (Figure 4), it should be noted that 
despite a significant reduction in the number of 
points (Table 2), the shape of polylines is not 
deformed. Polylines retain their characteristic 
bends at any scale, both at the scale of 1:10,000 
and 1:100,000. It is also worth pointing out that 
polylines at any scale are created only from 

Table 1. Characteristics of polylines before generalisation based on BDOT10k data

Polyline Number  
of points

Total length  
in [m]

Minimum side length  
in [m]

Maximum side length  
in [m]

Average side length 
in [m]

G 380 6194.2 3.1 72.1 16.4

D1 25 731.8 2.7 71.2 30.5

D2 30 782.4 2.6 67.4 27.0

D3 22 552.1 2.0 64.7 26.4

D4 134 2524.8 2.4 77.1 19.0

D5 7 153.9 15.9 45.4 25.7

D6 52 887.1 3.2 35.7 14.4

Figure 4. The shape of the Jałowica River with its 
tributaries obtained as a result of generalisation  

in selected scales
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the points of the original polyline, i.e. from the 
points of the BDOT10k topographic database. 
In this method, no other new points are added 
to the polyline. It is worth noting that the use of 
the above-mentioned coefficients of the Sa­
lichtchev’s norm, dependent only on the scale, 
makes it possible to generalise a polyline in 
any non-standard scale.

6. Conclusions

The article is in line with the topic of spatial 
data processing contained in the INSPIRE Di­
rective (Directive 2007/2/EC of the European 
Parliament and of the Council of 14 March 
2007 establishing an Infrastructure for Spatial 
Information in the European Community, 2007). 
The article presents a solution to the problem 
of generalisation, as one of the three “reefs of 
cartography” defined by von Sydow (1866). 
This article is a continuation of the solutions 
contained in publications by Barańska et al. 
(2021) and Banasik et al. (2022) and used for 
a complex structure, the so-called polyline 
band. The conclusions of the tests carried out 
for such a band are as follows:

1) Linear topographic objects (e.g. roads, 
rivers, etc.) and closed areas are presented in 
the form of a band with two edges and their axis.

2) The band axis is subject to generalisation 
as an unambiguous representation of both its 
edges. The shape of the simplified axis deter­
mines the shape of both edges of the band 
after its simplification. 

3) Contractive self-mapping of any ordered 
polyline PO (e.g., band edges and its axis) is an 
objective transformation, as it depends solely 
on the scale of generalisation.

4) The generalisation of an ordered polyline 
PO in any s < 1 scale using contractive self­
-mapping and a binary tree system in a 1:1 
scale has one objective solution.

5) The verification of the simplification of the 
polyline is carried out by comparing the base 
and height of the triangles with the measures 
of Salichtchev’s recognition norms.

6) The process of polyline generalisation 
should be dissociated with the process of trans­
formation between coordinate systems, as the 
transformation can change the angular-linear 
measures of the polyline shape.

7) The example of generalisation of the Jało­
wica River, performed using real data (topo­
graphic database BDOT10k), indicates that it 
is possible to automatically simplify the shape 
of a polyline by significantly reducing the number 
of its points. Simplification is achieved by re­
ducing polyline points that are not significant 
for the recognition of the polyline shape. The 
applied generalisation method is characterised 
by the following:

− algorithm automation, requiring no inter­
vention from the cartographer,

− the generalisation process only uses the 
original, actual points of the polyline, included 
in databases, and no new points are added to 
the polyline,

Table 2. Polyline generalisation results in selected scales

Polyline
1:10,000 1:25,000 1:50,000 1:75,000 1:100,000

Number of points reduced (in %)

G 43 (11) 199 (52) 295 (78) 331 (87) 342 (90)

D1 5 (20) 12 (48) 13 (52) 17 (68) 20 (80)

D2 2 (7) 9 (30) 18 (60) 22 (73) 23 (77)

D3 3 (14) 8 (36) 16 (73) 18 (82) 19 (86)

D4 14 (10) 62 (46) 100 (75) 108 (81) 114 (85)

D5 0 (0) 1 (14) 4 (57) 5 (71) 5 (71)

D6 8 (15) 21 (40) 37 (71) 42 (81) 45 (87)

A total 75 (12) 312 (48) 483 (74) 543 (84) 568 (87)
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− using the target scale of the map as the 
only value determining the degree of simplifi­
cation of the polyline,

− ensuring minimum recognisability of the 
polyline shape that results from the resolution 
capabilities of the human eye,

− polylines can be generalised in any scale, 
including non-standard scales.
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