PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Existence, uniqueness and parameter perturbation analysis results of a fractional integro-differential boundary problem

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the formulation, the existence, uniqueness and stability of solutions and parameter perturbation analysis to Riemann-Liouville fractional differential equations with integro-differential boundary conditions are discussed by the properties of Green’s function and cone theory. First, some theorems have been established from standard fixed point theorems in a proper Banach space to guarantee the existence and uniqueness of positive solution. Moreover, we discuss the Hyers-Ulam stability and parameter perturbation analysis, which examines the stability of solutions in the presence of small changes in the equation main parameters, that is, the derivative order η, the integral order β of the boundary condition, the boundary parameter ξ , and the boundary value τ. As an application, we present a concrete example to demonstrate the accuracy and usefulness of the proposed work. By using numerical simulation, we obtain the figure of unique solution and change trend figure of the unique solution with small disturbances to occur in different kinds of parameters.
Rocznik
Strony
art. no. e145938
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
  • College of Mathematics, Taiyuan University of Technology, 030024, TaiYuan, Shanxi, ChinaCollege of Mathematics, Taiyuan University of Technology, 030024, TaiYuan, Shanxi, China
  • College of Mathematics, Taiyuan University of Technology, 030024, TaiYuan, Shanxi, China
autor
  • Human Sciences Research Council (HSRC), South Africa
  • Tshwane university of Technology, South Africa
  • College of Mathematics, Taiyuan University of Technology, 030024, TaiYuan, Shanxi, China
Bibliografia
  • [1] K. Diethelm and N.J. Ford, “Analysis of fractional differential equations,” J. Math. Anal. Appl., vol. 265, no. 2, pp. 229–248, 2002.
  • [2] C.B. Zhai and W. Wang, “Properties of positive solutions for m-point fractional differential equations on an infinite interval,” Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., vol. 113, no. 2, pp. 1289–1298, 2019.
  • [3] T. Kaczorek, J. Klamka, and A. Dzieli´nski, “Controllability of linear convex combination of linear discrete-time fractional systems,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, p. e143102, 2022.
  • [4] M. Klimek, “Existence-uniqueness result for a certain equation of motion in fractional mechanics,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 58, no. 4, pp. 573–581, 2010.
  • [5] M.A. Zaky, A.S. Hendy, and D. Suragan, “A note on a class of Caputo fractional differential equations with respect to another function,” Math. Comput. Simul., vol. 196, pp. 289–295, 2022.
  • [6] R. Magin, “Fractional calculus in bioengineering, part 1,” in Crit. Rev. Biomed. Eng., vol. 32, no. 1, 2004.
  • [7] H.G. Sun, Y. Zhang, D. Baleanu, W. Chen, and Y. Chen, “A new collection of real world applications of fractional calculus in science and engineering,” Commun. Nonlinear Sci. Numer. Simul., vol. 64, pp. 213–231, 2018.
  • [8] I. Slimane, G. Nazir, J.J. Nieto, and F. Yaqoob, “Mathematical analysis of Hepatitis C Virus infection model in the framework of non-local and non-singular kernel fractional derivative,” Int. J. Biomath., vol. 16, p. 2250064, 2023.
  • [9] S. Abbas, M. Benchohra, J.E. Lazreg, J.J. Nieto, and Y. Zhou, Fractional differential equations and inclusions, Classical and Advanced Topics. World Scientific, 2023.
  • [10] H. Boulares, A. Ardjouni, and Y. Laskri, “Positive solutions for nonlinear fractional differential equations,” Positivity, vol. 21, pp. 1201–1212, 2017.
  • [11] B. Ahmad and R. Luca, “Existence of solutions for a system of fractional differential equations with coupled nonlocal boundary conditions,” Fract. Calc. Appl. Anal., vol. 21, no. 2, pp. 423–441, 2018.
  • [12] S. Belmor, C. Ravichandran, and F. Jarad, “Nonlinear generalized fractional differential equations with generalized fractional integral conditions,” J. Taibah Univ. Sci., vol. 14, no. 1, pp. 114–123, 2020.
  • [13] H.M. Srivastava, A. Shehata, and S.I. Moustafa, “Some fixed point theorems for-contractions and their application to fractional differential equations,” Russ. J. Math. Phys., vol. 27, no. 3, pp. 385–398, 2020.
  • [14] H. Boulares, A. Benchaabane, N. Pakkaranang, R. Shafqat, and B. Panyanak, “Qualitative properties of positive solutions of a kind for fractional pantograph problems using technique fixed point theory,” Fractal Fract., vol. 6, no. 10, p. 593, 2022.
  • [15] M.A. Almalahi, S.K. Panchal, and F. Jarad, “Stability results of positive solutions for a system of ψ-Hilfer fractional differential equations,” Chaos Solitons Fractals, vol. 147, p. 110931, 2021.
  • [16] M. Xu and S. Sun, “Positivity for integral boundary value problems of fractional differential equations with two nonlinear terms,” J. Appl. Math. Comput., vol. 59, pp. 271–283, 2019.
  • [17] J.R. Wang, Y. Zhou, and W. Wei, “Study in fractional differential equations by means of topological degree methods,” Numer. Funct. Anal. Optim., vol. 33, no. 2, pp. 216–238, 2012.
  • [18] I. Ullah, R. Khan, and K. Shah, “On using topological degree theory to investigate a coupled system of non linear hybrid differential equations,” Comput. Methods Differ. Equ., vol. 7, no. 2, pp. 224–234, 2019.
  • [19] G.S. Ladde, V. Lakshmikantham, and A.S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman, Boston, 1985
  • [20] J.J. Nieto, “An abstract monotone iterative technique”, Nonlinear Anal.-Theory Methods Appl., vol. 28, no. 12, pp. 1923–1933, 1997.
  • [21] Z. Baitiche, C. Derbazi, M. Benchohra, and J.J. Nieto, “Monotone iterative technique for a new class of nonlinear sequential fractional differential equations with nonlinear boundary conditions under the ψ-Caputo operator,” Mathematics, vol. 10, no. 7, p. 1173, 2022.
  • [22] A. Ben Makhlouf, D. Boucenna, and M.A. Hammami, “Existence and stability results for generalized fractional differential equations,” Acta Math. Sci., vol. 40, pp. 141–154, 2020.
  • [23] A. Khan, H. Khan, J.F. Gómez-Aguilar, and T. Abdeljawad, “Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel,” Chaos Solitons Fractals, vol. 127, pp. 422–427, 2019.
  • [24] A. Cardone and D. Conte, “Stability analysis of spline collocation methods for fractional differential equations,” Math. Comput. Simul., vol. 178, pp. 501–514, 2020.
  • [25] X. Wu, F. Chen, and S. Deng, “Hyers-Ulam stability and existence of solutions for weighted Caputo-Fabrizio fractional differential equations,” Chaos Solitons Fractals-X , vol. 5, p. 100040, 2020.
  • [26] J.V.C. Sousa, F.G. Rodrigues, and E. Capelas de Oliveira, “Capelas de Oliveira. Stability of the fractional Volterra integro-differential equation by means of ψ-Hilfer operator,” Math. Meth. Appl. Sci., vol. 42, no. 9, pp. 3033–3043, 2019.
  • [27] R. Agarwal, D. O’Regan, and S. Hristova, “Stability of Caputo fractional differential equations by Lyapunov functions,” Appl. Math., vol. 60, no. 6, pp. 653–676, 2015.
  • [28] K. Liu, J.R. Wang, Y. Zhou, and D. O’Regan, “Hyers–Ulam stability and existence of solutions for fractional differential equations with Mittag–Leffler kernel,” Chaos Solitons Fractals, vol. 132, p. 109534, 2020.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6f25161-2f54-4af8-95ea-0d235c1f9ce1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.