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Real-time implementation of multiple model based
predictive control strategy to air/fuel ratio

of a gasoline engine
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Growing safety, pollution and comfort requirements influence automotive industry ever
more. The use of three-way catalysts in exhaust aftertreatment systems of combustion engines
is essential in reducing engine emissions to levels demanded by environmental legislation. How-
ever, the key to the optimal catalytic conversion level is to keep the engine air/fuel ratio (AFR)
at a desired level. Thus, for this purposes more and more sophisticated AFR control algorithms
are intensively investigated and tested in the literature. The goal of this paper is to present for
a case of a gasoline engine the model predictive AFR controller based on the multiple-model
approach to the engine modeling. The idea is to identify the engine in particular working points
and then to create a global engine’s model using Sugeno fuzzy logic. Opposite to traditional
control approaches which lose their quality beside steady state, it enables to work with satis-
factory quality mainly in transient regimes. Presented results of the multiple-model predictive
air/fuel ratio control are acquired from the first experimental real-time implementation on the
VW Polo 1390cm3 gasoline engine, at which the original electronic control unit (ECU) has been
fully replaced by a dSpace prototyping system which execute the predictive controller. Required
control performance has been proven and is presented in the paper.

Key words: model predictive control, multiple models, air/fuel ratio, spark ignition engine,
ARX models

1. Introduction

A run of a spark ignition engine (SI) is highly dependent on the mixture of the
sucked air and injected fuel present in the cylinder, waiting to be ignited by a spark.
Incorrect ratio of this two components may lead to poor engine performance, ineffective
functionality of the catalytic converter resulting in a higher level of emissions polluting
the environment and in an extreme case this can lead to engine stoppage. Due to this
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reason it is crucial to keep the air/fuel ratio (AFR) at the stoichiometric level, which
means, that both the air and the fuel are completely combusted. Due to above mentioned
reasons and all time tightening emission standards the car producers are improving the
control of the air/fuel ratio.

Traditional control of air/fuel ratio is based on a feedforward control using prede-
fined tables determining how much fuel has to be injected into a cylinder, based on the
information from the mass air flow meter. This fuel amount is subsequently corrected us-
ing the information from the lambda probe, so the stoichiometric mixture can be reached.
Due to the lambda probe position (at the engine exhaust) a delay is present, causing an
improper feedback correction at the unstable engine regimes, like acceleration, or decel-
eration. On the other side, this kind of control guarantees stability and robustness at all
conditions and therefore is still preferred by car producers, despite its disadvantages in
control. The academic field has started to publish other kinds of air/fuel control strate-
gies, mostly model-based ones. The model-based approaches are bringing good quality
of control, but are also more sensitive to the model precision and issues with stability and
robustness appear. A survey through popular ”mean value engine modeling” is described
in [2]. This analytical way of engine modeling is very clear, but requires exact knowl-
edge of the system and the model error has to be taken into account explicitly. Other
ways of model acquisition are based on an experimental identification (black box mod-
eling). Works of [14], [15] and [4] are specialized in employment of neural networks,
while [7] uses for engine modeling CARIMA models. In the engine air/fuel control have
become popular fuzzy logic ( [4]), neural network control ( [1]) and model predictive
control (MPC) approaches also ( [5] and [10]). In MPC considerations the related topics
on stability and robustness issues can be found e.g. in [8], or [13].

Our approach, introduced in [12] is utilizing an analytical model based predictive
controller with terminal state penalization. It uses a multi-model approach based on a
weighted net (Sugeno-type fuzzy logic) of autoregressive (ARX) models as a system
model. The ARX models were identified in particular working points of the engine as
black box models. This method of engine modeling offers an easy way of ”global non-
linear system model” acquisition with subsequent utilization in the model based system
control. The obtained preliminary real-time control results presented in this paper in-
dicate that the proposed predictive controller could be a suitable alternative toward the
air/fuel ratio control via look-up tables.

2. Air/fuel ratio

The model of the air/fuel ratio dynamics λ of a spark ignition engine is defined as a
mass ratio of the air and fuel present in a cylinder at a time instance k. Due to the fact,
that the air mass flow is measured as an absolute value, it is necessary to integrate this
amount during the particular time and express the air and fuel quantity as relative mass
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(grams/cylinder). Hence, the air/fuel ratio is defined, as:

λ(k) =
ma(k)
m f (k)

1
Lth

(1)

where ma(k) and m f (k) are relative mass amounts of air and fuel in a cylinder and Lth ≈
14.64 is the theoretical amount of air necessary for the ideal combustion of a unit amount
of fuel. The Lth constant normalizes the ideal value of λ to be 1.0.

3. SI engine modeling using ARX models

The engine modeling is based on the weighted linear local model with single input
single output (SISO) structure [11]. The parameters of local linear ARX models with
weighted validity [9] are identified to model the nonlinear dynamics of the AFR. The
principle of this nonlinear modeling technique is in partitioning the engine’s working
range into smaller working points.

A net of local ARX models weighted for a particular working point ϕ is defined as
follows:

nM

∑
h=1

ρh(ϕ(k))Ah(q)y(k) =
nM

∑
h=1

ρh(ϕ(k))Bh(q)u(k)+
nM

∑
h=1

ρh(ϕ(k))ch + e(k) (2)

where the polynomials Ah and Bh

Ah(q) = 1+ah,1q−1 + . . .+ah,nyq
−ny

Bh(q) = bh,1+dhq−1−dh + . . .+bh,nu+dhq−nu−dh
(3)

are of the operator q−i which denotes a sample delay i.e. q−iy(k) = y(k − i); ah,i and
bh,( j+dh) are parameters of hth local function and dh is its delay. Parameter nM represents
the number of local models. The ρh denotes a weighting function of a particular ARX
model (see Sec. 3.1) and the e(k) is a stochastic term with white noise properties. The
engine working point itself is defined by engine revolutions nen and the throttle valve po-
sition tr, hence: ϕ(k) = [nen(k), tr(k)]T . The absolute term ĉh of the equation is computed
from the steady state values of the system output ye,h and the system input ue,h, as:

ĉh = ye,h + ye,h

ny

∑
i=1

âh,i −ue,h

nu

∑
j=1

b̂h, j. (4)

The model output is computed from the equation:

ys(k) =
nM

∑
h=1

ρh(ϕ(k))

(
ny

∑
i=1

âh,iq−iys(k)+
nu

∑
j=1

b̂h,( j+dh)q
− j−dhu(k)+ ĉh

)
(5)
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which after introduction of the estimated parameter vector θ̂h and the regression vector
γ(k), takes the following form:

ys(k) = γT (k)
nM

∑
h=1

ρh(ϕ(k))θ̂h +
nM

∑
h=1

ρh(ϕ(k))ĉh. (6)

3.1. Weighting functions

The full working range of the engine has been covered by a discrete amount of local
linear models (LLMs), identified at the particular working points. The LLMs are being
weighted by the weighting functions defining validity of each local model according
to instantaneous working point of the engine. Due to a requirement of a smooth and
continuous global engine model, the design of these weighting functions was crucial.

There were designed particular interpolation functions for every LLM, assigning
them perfectly at the belonging working point with a decreasing tendency in the direc-
tions of the deviation of the throttle valve opening ∆tr and the engine revolutions ∆nen
from the particular working point. ”Three dimensional” Gaussian functions:

ρ̃h(ϕ(k)) = exp

−[ ∆nen(k) ∆tr(k)
] 1

σ2
h,1

0

0 1
σ2

h,2

[ ∆nen(k)
∆tr(k)

] (7)

were used as the local weighting functions, due to their suitable structure fulfilling the ap-
proximation properties. Tuning parameters σh,1 = 250 and σh,2 = 0.8 used in the weight-
ing functions have been chosen experimentally, assuring output of the modeled system to
be continuous and smooth. At the same time the experiments have shown, that identical
weighting functions can be used for weighting the air and fuel path parameters.

All the weighting functions were finally normalized by creating normalizing weight-
ing functions:

ρh(ϕ(k)) =
ρ̃h(ϕ(k))

nM

∑
h=1

ρ̃h(ϕ(k))
, (8)

so the sum of values of all weighting functions belonging to a particular working point
(Fig. 1), equals exactly one: ∑nM

h=1 ρh(ϕ(k)) = 1.

3.2. Model identification

Considering the λ(k) modeling, the engine has been divided into two subsystems
with independent inputs, namely:

air path with the air throttle position as the disturbance input, and
fuel path with the input of fuel injector opening time.

Another disturbance-like acting quantity in the air path were engine revolutions, implic-
itly included in the engine model, particularly for each working point.
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Figure 1. Relative weighting Gaussian functions

Parameters of the local ARX models have been estimated using data acquired from
the exhaust gas oxygen sensor (λa, λ f ) and the air flow sensor. The identification has
been designed so that the dynamics of the air path and the fuel path remained uncoupled,
hence the dynamics of both paths were measured indirectly.

3.2.1. Fuel path identification

The identification of the fuel path dynamics has been done similarly, but with the
fixed throttle valve delivering a constant air mass ma,e, see Fig.2. Pseudo random binary
signal (PRBS) was varying the fuel injectors’ opening time and the value of λ f was
measured again.

Figure 2. Pulse width excitation with PRBS

3.2.2. Air path identification

The first experiment started at the stoichiometric value of λa in the operation point
ϕ. To excite the air path dynamics, the throttle valve position was oscillating around its
steady position according to PRBS, while the fuel injectors were delivering constant fuel
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mass m f ,e, see Fig. 3. The change in λa value has been recorded. During the experiment
the engine was braked at a constant revolutions.

Figure 3. Pulse width excitation with PRBS

In both experiments it was necessary to wisely propose a PRBS, so that the air/fuel
mixture is always ignitable.

Local ARX models can be subsequently determined from the measured values of
instantaneous λa(k) and λ f (k) belonging to the air path and fuel path, utilizing relative
air and fuel mass densities:

ma(k) = ma,e(ϕ)λa(k) (9)

and

m f (k) =
m f ,e(ϕ)
λ f (k)

. (10)

The final formula describing the aif/fuel ratio dynamics is build from local linear
ARX models of the air and fuel paths in the form:

λs(k) =
1

Lth


γT

a (k)
nA

∑
h=1

ρa,h(ϕ(k))θ̂a,h +
nA

∑
h=1

ρa,h(ϕ(k))ĉa,h

γT
f (k)

nF

∑
h=1

ρ f ,h(ϕ(k))θ̂ f ,h +
nF

∑
h=1

ρ f ,h(ϕ(k))ĉ f ,h

 (11)

where:

γ is the regression vector of system inputs and outputs,
nA is the amount of working points,
ρ is the interpolation function,
ϕ is the vector of a working point,
θ is the vector of ARX parameters,
c is the absolute term of an ARX model.

In accordance with the presented general model structure, the key variables are de-
fined in the Table 6.
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Table 6. Symbol connection between the general expression and the model

general air-path fuel-path operating
symbol model model point

y(k) ma(k) m f (k)
u(k) tr(k) u f (k)
γ(k) γa(k) γ f (k)
θ̂h θ̂a,h θ̂ f ,h

ρh(ϕ(k)) ρa,h(ϕ(k)) ρ f ,h(ϕ(k))
ĉh ĉa,h ĉ f ,h

ϕ(k) [ne(k), tr(k−δ)]T

4. Predictive control

The strategy of an ”exceeding oxygen amount” control using a predictive controller
is based on a prediction of a controlled quantity λ and subsequent minimization of a cho-
sen cost function on the horizon Np expressed in a standard quadratic form. The value
of λ is predicted by utilizing partially linear models of the air and fuel path. Through the
independent air path model the proper amount of fuel is predicted and enters the cost
function J. Hence, the target of the cost function minimization is to determine a con-
trol law, such that the measured system output λ is stechiometric. The second modeled
subsystem, the fuel-path, is an explicit component of the objective function where the
amount of fuel is a function of optimized control actions ( [11]).

4.1. State-space prediction model

The applied control strategy is based on the knowledge of the internal model (IM) of
air-path, predicting the change of air flow through the exhaust pipe, and consequently,
setting the profile of desired values of the objective function on the control horizon. In
this case we will consider the state space (SS) formulation of the system and therefore
it is necessary to express linear local ARX models in the SS structure with time varying
parameters:

x(a, f )(k+1) = A(a, f )(ϕ)x(a, f )(k)+B(a, f )(ϕ)u(a, f )(k),
(12)

ms,(a, f )(k) = C(a, f )x(a, f )(k).

The weighted parameters of multi-ARX models are displayed in matrices Aa, f and
Ba, f for both subsystems. This is a non-minimal SS representation which advantage is
that no state observer is needed. The ”fuel pulse width control” is tracking changes of air
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100 S. WOJNAR, T. POLÓNI, P. ŠIMONČIČ, B. ROHAL’-ILKIV, M. HONEK, J. CSAMBÁL

mass on a prediction horizon from IM of the air-path, by changing the amount of injected
fuel mass. Due to tracking offset elimination, the SS model of the fuel-path (13) (index
f ), with its state space vector x f , is written in augmented SS model form to incorporate
the integral action:

x̃ f (k+1) = Ã f (ϕ)x̃ f (k)+ B̃ f (ϕ)∆u f (k) (13)
or[

x f (k+1)
u f (k)

]
=

[
A f (ϕ) B f (ϕ)

0 1

][
x f (k)

u f (k−1)

]
+

[
B f (ϕ)

1

]
∆u f (k),

ns, f (k) = C̃ f x̃ f (k)+D f ∆u f (k) (14)
or

ms, f (k) =
[

C f D f

]
x̃ f (k)+D f ∆u f (k).

The prediction of the air mass (m−→a) on the prediction horizon (Np) is dependent on
the throttle position ( t−→r) and is computed as

m−→a(k) = Γa(ϕ)xa(k)+Ωa(ϕ) t−→r(k−1) (15)

where the xa denotes the state space vector of the air path.
Due to unprecise modeling (IM strategy), the biased predictions of the air mass fu-

ture trajectory and consequently biased fuel mass might occur. This error d(k) is com-
pensated incorporating the term L[m̂ f (k)−ms, f (k)] into the fuel mass prediction equa-
tion:

m−→ f (k) = Γ f (ϕ)x̃ f (k)+Ω f (ϕ)∆ u−→ f (k−1)+d(k). (16)

The matrices of the free response Γa, Γ f and forced response Ωa, Ω f are computed from
the SS model (13), respectively [6]. Since only λ(k) is measurable in the equation (1),
the value of ma(k) needs to be substituted using IM of the air-path, then:

m̂ f (k) =
1

Lth

ms,a(k)
λ(k)

. (17)

The estimate m̂ f (k) is used to compensate for possible bias errors of predicted m−→ f (k) in
(16).

4.2. Problem’s solution

The net of models presented in the Section 3 creates the nonlinear model. However
each of the models is essentially linear. For this case, the minimum of the cost func-
tion, which has a quadratic form and does not have any constraints, has only one mini-
mum. Thus if we assume that the function’s derivative is equal to zero in the function’s
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minimum and that there is only one minimum, then we can pre-compute the analytical
solution of the control.

The following cost function (18) encompasses deviations of predicted fuel mass
amounts between the air and fuel path (based on (1)); a penalization of control incre-
ments r; and a penalization p of a deviation between the predicted and desired final
state:

Jλ =

∥∥∥∥∥ m−→a(k)

Lth
− m−→ f (k)

∥∥∥∥∥
2

2

+ r∥∆ u−→ f (k−1)∥2
2 + p∥x̃ f (N)− x̃ f ,r(N)∥2

2. (18)

The preferred MPC approach utilizes the state space representation with integral
control and with the term d(k) for corrections of predictions.

Due to a disturbance, the steady state values of u and x have to be adapted in a
way that the assumption J = 0 is valid. This problem solves an explicit inclusion of the
disturbance into the model.

The fuel injectors are controlled by a fuel pulse width, which is at the same time
the control u f . The optimal injection time can be computed by a minimization of the
cost function (18), which will have after expanding by the fuel path prediction equation,
form:

Jλ =

∥∥∥∥ m−→a

Lth
−Γ f x̃ f (k)−Ω f ∆ u−→ f (k−1)−d(k)

∥∥∥∥2

2 (19)
+ r

∥∥∥∆ u−→ f (k−1)
∥∥∥2

2
+ p∥x̃ f (N)− x̃ f ,r(N)∥2

2

An analytical solution of dJλ
∆ u−→

= 0 of (20) without constraints leads to an expression

determining the change of ”fuel injector opening time” in a step (k), as:

∆u =
(
ΩT Ω+ Ir+ pΩT

xNΩxN
)−1 [ΩT [w(k)−Γx̃(k)−d(k)]

(20)
− pΩT

xNAN x̃(k)+ pΩT
xN x̃ f ,r(N)

]
.

Hence, the absolute value of the control action in a step k is given as a sum of a newly
computed increment in the control (21) and an absolute value of the control in step
(k−1):

u f (k) = u f (k−1)+∆u f (k). (21)

5. Rapid Control Prototyping system

The computational unit necessary for the real-time implementation of the MPC con-
trol is based on a powerful and freely programmable control system based on dSpace
and RapidPro units; or ”Rapid Control Prototyping” system” (RCP), (Fig. 4, [3]). This
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102 S. WOJNAR, T. POLÓNI, P. ŠIMONČIČ, B. ROHAL’-ILKIV, M. HONEK, J. CSAMBÁL

is built on the processor board ds1005 which is the main processing unit based on the
IBM PowerPC 750GX processor. The RCP ensures sufficient headroom for the real-time
execution of complex algorithms ( [1]) and lets all engine tasks to be controlled directly.
Also, the customized variants of the controller can be performed immediately.

Typical RCP system consists of:

• a math modeling program (prepared in Simulink),

• symbolic input/output blocks,

• a real-time target computer (embedded computer with an analog and digital I/O),

• a host PC with communication links to target computer,

• a graphical user interface (GUI) which enables to control the real time process.

The RCP system enables to use a support in the form of embedded functions which
make the preparation of algorithms simple and fast. It is a great help, because one can
concentrate on important problems as developing and debugging the algorithms rather
then waste a time on less important tasks e.g. how to handle features of RCP system at
low level programming.

Figure 4. Rapid control prototyping scheme

6. Real-time application of a predictive control

The ability to control the mixture concentration at the stoichiometric level using the
studied MPC is demonstrated through the real-time SI engine control (Fig. 5).

This has been performed using the AFR predictive control strategy described in the
previous section, designed in Matlab/Simulink environment and compiled as a real-time
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Figure 5. Control scheme

application for a dSpace platform. It has been applied to the VW Polo engine (Fig. 6),
1390 cm3 with 55kW@5000 rpm, not equipped with a turbocharger or an exhaust gas
recirculation system. The control period was 0.2s. The result of an identification are
9 local linear models (LLM) for each, air and fuel path, dependent on a throttle valve
opening and engine revolutions.

Figure 6. SI engine on a test bench

The primary aim of the control (Fig. 7) was to keep the air/fuel ratio in a stoichio-
metric region (λ = 1), in the worst case to keep the mixture ignitable (0.7 ¬ λ ¬ 1.2).
During the experiment, the change in the throttle valve opening, between 21 and 22 de-
grees (variable tr in Fig. 7) and the change of engine revolutions ( variable nen), has
been performed several times. These changes simulate varying working regimes of an
engine, which are adapting its run to a daily traffic. Changes in tr and nen quantities are
determining the engine load, at the same time, ensuring, that the engine passes through
several working points during its operation. As mentioned in Section 3, the engine revo-
lutions are not included among explicit variables of local models, but they form together
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with a delayed throttle valve position a vector of an working point ϕ(k). The quality of
control is sufficient (variable λ in Fig. 7), with exceptional acceptable overshoots in both
directions. These overshoots of the controlled variable λ have been caused by a lower
model precision, due to its distance from the working point, at which the system identi-
fication has been performed. This effect is caused by the approximation of a particular
model from the other working points’ models. The corresponding control (fuel injection
time) computed by the controller is shown in Fig. 7 as variable tin j. Before experiments
the initial engine warm-up (to 80 ◦C ) has eliminated model-plant mismatch caused by
temperature dependent behavior of the engine.

The control has been performed also by choosing the penalization r = 0.1. Utilizing
the member p∥x̃ f (N)− x̃ f ,r(N)∥2

2 of the cost function by setting p = 1.0 allowed us to
shorten the control horizon to Np = 20 what significantly unloaded the computational
unit and stabilized the controlled output of the engine on this shortened horizon as well,
see Fig.8. The best control has been achieved in the neighborhood of working points,
what is logically connected with the higher precision of the used engine model at those
points. In other working points the control is still good enough, with small deviations
from the stoichiometric mixture.

Figure 7. Results of the engine AFR predictive control without terminal state penalization

7. Conclusion

Considering the first preliminary results obtained from the reported real-time ex-
periments carried out on the tested engine, it can be concluded, that the idea of the AFR
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Figure 8. Results of the engine AFR predictive control with terminal state penalization

multi-model predictive control based on local ARX models is suitable and applicable for
SI engines control. The proposed flexible design of the predictive controller offers easy
tuning possibilities and potentially higher accuracy by extension of the studied global
nonlinear engine model into the engine broader working regimes with more operating
points. Therefore the next project step shall be the λ overshoots elimination by using the
wider net of the local linear engine models and also active implementation of the process
constraints.
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