PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Friction on Buckling Behavior in Shallow Spherical to Hemispherical Shells in Contact with Rigid Boundaries under Uniform External Pressure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the influence of friction on the buckling behavior of thin, elastic, spherical shells under uniform external pressure. The study spans a range of geometric parameters, from shallow shells to hemispheres. Three different end-edge boundary conditions—clamped, hinged, and frictional ends—are considered across a wide range of friction coefficients using an axisymmetric model and nonlinear buckling analysis. The spherical shell becomes increasingly susceptible to buckling when the friction coefficient falls below the converged friction coefficient. A formula is developed to estimate this converged friction coefficient for each geometric parameter. Furthermore, a boundary separating the effects of friction on critical pressure into distinct regions is established, and equations predicting critical pressure within each region are provided. The study also finds that friction influences the buckling mode transition in the shells. Due to significant changes in the theta angle of the no-bending point with increasing geometric parameter and friction coefficient, buckling mode transitions occur at lower friction coefficients in wider spherical shells. These findings provide valuable insights into the intricate interplay between geometric parameter, friction, and buckling behavior in shells. In practical applications, this study can be used to assess and enhance the safety and reliability of spherical shells.
Twórcy
  • Division of Mechanical Engineering and Science, Saitama University, Japan
autor
  • Division of Mechanical Engineering and Science, Saitama University, Japan
autor
  • Department of Mechanical Engineering, Tokyo Institute of Technology, Japan
Bibliografia
  • 1. Zoelly R. About a buckling problem on the spherical shell (Üeber ein Knickungsproblem an der Kugelschale). Ph.D Thesis, ETH Zurich, Zurich 1915. doi:10.3929/ethz-a-000091951
  • 2. Kollar L. Buckling of complete spherical shells and spherical caps. In: Proceedings of a State-of-the-Art Colloqium, Berlin, Germany 1982, 401-425. doi: 10.1007/978-3-642-49334-8_14
  • 3. Pan B.B., Cui W.C., Shen Y.S., Liu T. Further study on the ultimate strength analysis of spherical pressure hulls. Marine Structures 2010; 23(4): 444–461. doi: 10.1016/j.marstruc.2010.11.001
  • 4. Pan B.B., Cui W.C., Shen Y.S. Experimental verification of the new ultimate strength equation of spherical pressure hulls. Marine Structures 2012; 29(1): 169–176. doi: 10.1016/j.marstruc.2012.05.007
  • 5. Zhang J., Zhang M., Tang W., Wang W., Wang M. Buckling of spherical shells subjected to external pressure: A comparison of experimental and theoretical data. Thin-Walled Structures 2017; 111: 58–64. doi: 10.1016/j.tws.2016.11.012
  • 6. Wagner H.N.R., Hühne C., Zhang J., Tang W., Khakimova R. Geometric imperfection and lower-bound analysis of spherical shells under external pressure. Thin-Walled Structures 2019; 143: 106195. doi: 10.1016/j.tws.2019.106195
  • 7. Tsien H.S. A Theory for the buckling of thin shells. Journal of theAeronautical Sciences 1942; 9(10): 373–384. doi: 10.1016/B978-0-12-398277-3.50011-7
  • 8. Reissner E. Stresses and small displacements of shallow spherical shells. I. Studies in Applied Mathematics 1946; 25(1–4): 80–85. doi:10.1002/sapm194625180
  • 9. Kaplan A., Fung Y.C. A nonlinear theory of bending and buckling of thin elastic shallow spherical shells. NACA Technical Note 3212, California Institute of Technology, Washington 1954, 1–58.
  • 10. Litle W.A. Reliability of shell buckling predictions based upon experimental analysis of plastic models. Ph.D Thesis, Massachusetts Institute of Technology, the United States of America 1956.
  • 11. Reiss E.L., Greenberg H.J., Keller H.B. Nonlinear deflections of shallow spherical shells. Journal of the Aeronautical Sciences 1957; 24(7): 533–543. doi: 10.2514/8.3893
  • 12. Weinitschke H.J. On the nonlinear theory of shallow spherical shells. Journal of the Society for Industrial and Applied Mathematics 1958; 6(3): 209–232. doi: 10.1137/0106015
  • 13. Reiss E.L. Axially symmetric buckling of shallow spherical shells under external pressure. Journal of Applied Mechanics 1958, 25(4): 556–560. doi: 10.1115/1.4011872
  • 14. Keller H.B., Reiss E.L. Spherical cap snapping. Journal of the Aerospace Sciences 1959; 26(10): 643–652. doi: 10.2514/8.8240
  • 15. Budiansky B. Buckling of clamped shallow spherical shells. Technical Report No.5, Harvard University, Massachusetts 1959, 1–48.
  • 16. Homewood R.H., Brine A.C., Johnson A.E. Experimental investigation of the buckling instability of monocoque shells. Experimental Mechanics 1961; 1(3): 88–96. doi: 10.1007/BF02324071
  • 17. Thurston G.A. A numerical solution of the nonlinear equations for axisymmetric bending of shallow spherical shells. Journal of Applied Mechanics 1961; 28(4): 557–562. doi: 10.1115/1.3641782
  • 18. Archer R.R. On the numerical solution of the nonlinear equations for shell of revolution. Studied in Applied Mathematics 1962; 41(1–4): 165–178. doi:10.1080/21642583.2014.98634
  • 19. Krenzke M.A., Kiernan T.J. Elastic stability of near-perfect shallow spherical shells. AIAA Journal 1963; 1(12): 2855–2857. doi: 10.2514/3.2187
  • 20. Parmerter R.R. The buckling of clamped shallow spherical shells under uniform pressure. Ph.D Thesis, California Institute of Technology, the United States of America 1964. doi: 10.7907/R18G-ZC96
  • 21. Archer R.R., Famili J. On the vibration and stability of finitely deformed shallow spherical shells. Journal of Applied Mechanics 1965; 32(1): 116–120. doi:10.1115/1.3625705
  • 22. Thurston G.A., Penning F.A. Effect of axisymmetric imperfections on the buckling of spherical caps under uniform pressure. AIAA Journal 1966; 4(2): 319–327. doi: 10.2514/3.3435
  • 23. Wang L.R.L. Discrepancy of experimental buckling pressures of spherical shells. AIAA Journal 1967; 5(2): 357–359. doi: 10.2514/3.3975
  • 24. Sunakawa M., Ichida K. A high precision experiment on the buckling of spherical caps subjected to external pressure. ISAS report/Institute of Space and Aeronautical Science, University of Tokyo, Tokyo 1974, 87–121.
  • 25. Yamada S., Uchiyama K., Yamada M. Experimental investigation of the buckling of shallow spherical shells. International Journal of Non-Linear Mechanics 1983; 18(1): 37–54. doi: 10.1016/0020-7462(83)90017-3
  • 26. Grigolyuk E.I., Lopanitsyn Y.A. The axisymmetric postbuckling behaviour of shallow spherical domes. Journal of Applied Mathematics and Mechanics 2002; 66(4): 605–616. doi: 10.1016/S0021-8928(02)00079-5
  • 27. Marcinowski J. Stability of relatively deep segments of spherical shells loaded by external pressure. Thin-Walled Structures 2007; 45(10–11): 906–910. doi: 10.1016/j.tws.2007.08.034
  • 28. Kołodziej S., Marcinowski J. Experimental and numerical analyses of the buckling of steel, pressurized, spherical shells. Advances in Structural Engineering 2018; 21(16): 1–18. doi: 10.1177/1369433218774371
  • 29. Kloppel V.K., Jungbluth O. Contribution to the buckling problem of thin-walled spherical shells. Experiments and Calibration formulas. (Beitrag zum Durchschlagproblem dunnwandiger Kugelschalen. Versuche und Bemessungsformeln). Der
  • Stahlbau 1953; 22(6): 121–130.
  • 30. Krenzke M.A. The elastic buckling strength of nearperfect deep spherical shells with ideal boundaries. Report 1713, David Taylor Model Basin, the United States of America 1963, 1–17.
  • 31. Krenzke M.A., Kierman T.J. The effect of initial imperfections on the collapse strength of deep spherical shells. Report 1757, Structural Mechanics Laboratory, Department of the Navy, the United States of America 1965, 1–34.
  • 32. Huang N.C. Unsymmetrical buckling of thin shallow spherical shells. Journal of Applied Mechanics 1964; 31(3): 447–457. doi: 10.1115/1.3629662
  • 33. Holston A. Approximate analytical solutions of the finite-deflection equations for a shallow spherical shell. Journal of Applied Mechanics 1964; 34(1): 65–72. doi: 10.1115/1.3607670
  • 34. Kai-Yuan Y., Wei-Ping S., Cleghorn W.L. Axisymmetric buckling of thin shallow circular spherical shells under uniform pressure for large values of geometric parameter λ. International Journal of Non-Linear Mechanics 1994; 29(4): 603–611. doi: 10.1016/0020-7462(94)90026-4
  • 35. Nguyen X.C., Arai Y., Araki W. Effect of friction on the buckling behavior of shallow spherical shells contacting with rigid walls. Archive of Mechanical Engineering 2023 (under review).
  • 36. Zhou F., Chen Z., Zheng C., Xu F., Hu Y., Hou S., Qin Z. Experimental and numerical buckling failure analysis of acrylic hemispheres for application in neutrino detector. Engineering Failure Analysis 2017; 78: 147–160. doi: 10.1016/j.engfailanal.2017.03.017
  • 37. Qu F., Jiang Z., Lu H. Effect of mesh on springback in 3D finite element analysis of flexible microrolling. Journal of Applied Mathematics 2015, 2015: 1–7. doi: 10.1155/2015/424131
  • 38. Li L., Wang L., Etsion I., Talke F. The effect of contact conditions and material properties on plastic yield inception in a spherical shell compressed by a rigid flat. International Journal of Solids and Structures 2011; 48(3–4): 463–471. doi: 10.1016/j.ijsolstr.2010.10.015
  • 39. Li L., Etsion I., Ovcharenko A., Talke F. The onset of plastic yielding in a spherical shell compressed by a rigid flat. Journal of Applied Mechanics 2011; 78(1): 011016. doi: 10.1115/1.4001994
  • 40. Ronen S., Goltsberg R., Etsion I. A comparison of stick and slip contact conditions for a coated sphere compressed by a rigid flat. Friction 2017; 5(3): 326–338. doi: 10.1007/s40544-017-0178-2
  • 41. Riks E. The application of Newton’s method to the problem of elastic stability. Journal of Applied Mechanics 1972; 39(4): 1060–1065. doi: 10.1115/1.3422829
  • 42. Riks E. An incremental approach to the solution of snapping and buckling problems. International Journal of Solids and Structures 1979; 15(7): 529–551. doi: 10.1016/0020-7683(79)90081-7
  • 43. Riks E. Some computational aspects of the stability analysis of nonlinear structures. Computer Methods in Applied Mechanics and Engineering 1984; 47(3): 219–259. doi: 10.1016/0045-7825(84)90078-1
  • 44. Shariati M., Allahbakhsh H.R. Numerical and experimental investigations on the buckling of steel semi-spherical shells under various loadings. Thin-Walled Structures 2010; 48(8): 620–628. doi: 10.1016/j.tws.2010.03.002
  • 45. Nasto A., Reis P.M. Localized structures in indented shells: A numerical investigation. Journal of Applied Mechanics 2014; 81(12): 21008. doi: 10.1115/1.4028804
  • 46. Lee A., Jiménez F.L., Marthelot J., Hutchinson J.W., Reis P.M. The geometric role of precisely engineered imperfections on the critical buckling load ospherical elastic shells. Journal of Applied Mechanics 2016; 83(11): 11005. doi: 10.1115/1.4034431
  • 47. Wang Y., Tang W., Zhang J., Zhang S., Chen Y. Buckling of imperfect spherical caps with fixed boundary under uniform external pressure. Marine Structures 2019; 65: 1–11. doi: 10.1016/j.marstruc.2019.01.004
  • 48. Wang Y., Zhang J., Tang W. Buckling performances of spherical caps under uniform external pressure. Journal of Marine Science and Application 2020; 19(1): 96–100. doi: 10.1007/s11804-020-00125-7
  • 49. Jasion P., Magnucki K. Elastic buckling of barrelled shell under external pressure. Thin-Walled Structures 2007; 45(4): 393–399. doi: 10.1016/j.tws.2007.04.001
  • 50. Archer R.R. Stability limits for a clamped spherical shell segment under uniform pressure. Quarterly of Applied Mathematics 1958; 15(4): 355–366. doi: 10.1090/qam/98515
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6e5a479-2050-4cd5-8f0f-e3a7819c5b58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.