PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Inter-relationship between microstructure evolution and mechanical properties in inertia friction welded 8630 low-alloy steel

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The evolution of microstructure and mechanical properties in AISI 8630 low-alloy steel subjected to inertia friction welding (IFW) have been investigated. The effects of three critical process parameters, viz. rotational speed, friction and forge forces, during welding of tubular specimens were explored. The mechanical properties of these weld joints, including tensile and Charpy V-notch impact were studied for determining the optimum welding parameters. The weld joints exhibited higher yield strength, lower hardening capacity and ultimate tensile strength compared to base metal (BM). The maximum strength and ductility combination was achieved for the welds produced under a nominal weld speed of ~ 2900–3100 rpm, the highest friction force of ~ 680–720 kN, and the lowest axial forging load of ~ 560–600 kN. The measured hardness distribution depicted higher values for the weld zone (WZ) compared to the thermo-mechanically affected zone (TMAZ), heat-affected zone (HAZ) and BM, irrespective of the applied welding parameters. The substantial increase in the hardness of the WZ is due to the formation of microstructures that were dominated by martensite. The observed microstructural features, i.e. the fractions of martensite, bainite and ferrite, show that the temperature in the WZ and TMAZ was above Ac3, whereas that of the HAZ was below Ac1 during the IFW. The fracture surface of the tensile and impact-tested specimens exhibited the presence of dimples nucleating from the voids, thus indicating a ductile failure. EBSD maps of the WZ revealed the formation of subgrains inside the prior austenite grains, indicating the occurrence of continuous dynamic recrystallisation during the weld. Analysis of crystallographic texture indicated that the austenite microstructure (i.e. FCC) in both the WZ and TMAZ undergoes simple shear deformation during IFW.
Rocznik
Strony
244--262
Opis fizyczny
Bibliogr. 39 poz., rys., wykr.
Twórcy
  • Advanced Forming Research Centre (AFRC), University of Strathclyde, 85 Inchinnan Drive, Inchinnan, Renfrewshire 4 9LJ, PA, UK
  • Advanced Forming Research Centre (AFRC), University of Strathclyde, 85 Inchinnan Drive, Inchinnan, Renfrewshire 4 9LJ, PA, UK
  • Advanced Forming Research Centre (AFRC), University of Strathclyde, 85 Inchinnan Drive, Inchinnan, Renfrewshire 4 9LJ, PA, UK
  • Advanced Forming Research Centre (AFRC), University of Strathclyde, 85 Inchinnan Drive, Inchinnan, Renfrewshire 4 9LJ, PA, UK
  • Advanced Forming Research Centre (AFRC), University of Strathclyde, 85 Inchinnan Drive, Inchinnan, Renfrewshire 4 9LJ, PA, UK
  • Department of Mechanical and Aerospace Engineering, University of Strathclyde James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, UK
Bibliografia
  • [1] Sharma SK, Maheshwari S. A review on welding of high strength oil and gas pipeline steels. J Nat Gas Sci Eng. 2017;38:203–17.
  • [2] Mathias LLS, Sarzosa DFB, Ruggieri C. Effects of specimen geometry and loading mode on crack growth resistance curves of a high-strength pipeline girth weld. Int J Press Vessels Pip. 2013;111–112:106–19.
  • [3] Banerjee A, Ntovas M, Da Silva L, Rahimi S. Effect of rotational speed and inertia on the mechanical properties and microstructural evolution during inertia friction welding of 8630M steel. Mater Lett. 2021;296:129906.
  • [4] Kuril AA, Janaki Ram GD, Bakshi SR. Microstructure and mechanical properties of keyhole plasma arc welded dual phase steel DP600. J Mater Process Technol. 2019;270:28–36.
  • [5] Liu FC, Nelson TW. Grain structure evolution, grain boundary sliding and material flow resistance in friction welding of Alloy 718. Mater Sci Eng A. 2018;710:280–8.
  • [6] Li W, Vairis A, Preuss M, Ma T. Linear and rotary friction welding review. Int Mater Rev. 2016;61(2):71–100.
  • [7] Yang LB, Gebelin JC, Reed RC. Modelling of inertia welding of IN718 superalloy. Mater Sci Technol. 2011;27(8):1249–64.
  • [8] Dey HC, Ashfaq M, Bhaduri AK, Rao KP. Joining of titanium to 304L stainless steel by friction welding. J Mater Process Technol. 2009;209(18):5862–70.
  • [9] Sathiya P, Aravindan S, Noorul Haq A. Mechanical and metallurgical properties of friction welded AISI 304 austenitic stainless steel. Int J Adv Manuf Technol. 2005;26(5):505–11.
  • [10] Selvamani ST, Palanikumar K. Optimizing the friction welding parameters to attain maximum tensile strength in AISI 1035 grade carbon steel rods. Measurement. 2014;53:10–21.
  • [11] Hazra M, Rao KS, Reddy GM. Friction welding of a nickel free high nitrogen steel: influence of forge force on microstructure, mechanical properties and pitting corrosion resistance. J Market Res. 2014;3(1):90–100.
  • [12] Rahimi S, Konkova TN, Violatos I, Baker TN. Evolution of microstructure and crystallographic texture during dissimilar friction stir welding of duplex stainless steel to low carbon-manganese structural steel. Metall and Mater Trans A. 2019;50(2):664–87.
  • [13] Rahimi S, Wynne BP, Baker TN. Development of microstructure and crystallographic texture in a double-sided friction stir welded microalloyed steel. Metall Mater Trans A. 2017;48(1):362–78.
  • [14] Abdul Ghani Khan M, Rajakumar S, Pragatheswaran T. Influence of rotational speed on mechanical and microstructural characteristics on the rotary friction welded as-cast LM25 aluminium alloy. Mater Today Proc. 2020.
  • [15] Daniyan IA, Mpofu K, Adeodu AO. Optimization of welding parameters using Taguchi and response surface methodology for rail car bracket assembly. Int J Adv Manuf Technol. 2019;100(9):2221–8.
  • [16] Nyyssönen T, Peura P, Kuokkala VT. Crystallography, morphology, and martensite transformation of prior austenite in intercritically annealed high-aluminum steel. Metall Mater Trans A. 2018;49(12):6426–41.
  • [17] Standard test methods for tension testing of metallic materials [Metric].
  • [18] Standard test methods and definitions for mechanical testing of steel products.
  • [19] Javaheri V, Khodaie N, Kaijalainen A, Porter D. Effect of niobium and phase transformation temperature on the microstructure and texture of a novel 0.40% C thermomechanically processed steel. Mater Charact. 2018;142:295–308.
  • [20] Bhadeshia HKDH. Bainite in steels: transformations, microstructure and properties. IOM Communications. 2001.
  • [21] Zilnyk KD, Oliveira VB, Sandim HRZ, Möslang A, Raabe D. Martensitic transformation in Eurofer-97 and ODS-Eurofer steels: a comparative study. J Nucl Mater. 2015;462:360–7.
  • [22] Afrin N, Chen DL, Cao X, Jahazi M. Strain hardening behavior of a friction stir welded magnesium alloy. Scripta Mater. 2007;57(11):1004–7.
  • [23] Banerjee A, Prusty BG, Bhattacharyya S. Rate-dependent mechanical strength and flow behaviour of dual-phase high carbon steel at elevated temperatures: an experimental investigation. Mater Sci Eng, A. 2019;744:224–34.
  • [24] Wallin K, Karjalainen-Roikonen P, Suikkanen P. Sub-sized CVN specimen conversion methodology. Proc Struct Integr. 2016;2:3735–42.
  • [25] Mesplont C. Phase transformations and microstructure-mechanical properties relations in complex phase high strength steels. 2002.
  • [26] Baker TN, Rahimi S, Wei B, He K, McPherson NA. Evolution of microstructure during double-sided friction stir welding of micro-alloyed steel. Metall Mater Trans A. 2019;50(6):2748–64.
  • [27] Eghbali B, Abdollah-Zadeh A. Deformation-induced ferrite transformation in a low carbon Nb–Ti microalloyed steel. Mater Des. 2007;28(3):1021–6.
  • [28] Celada-Casero C, Sietsma J, Santofimia MJ. The role of the austenite grain size in the martensitic transformation in low carbon steels. Mater Des. 2019;167:107625.
  • [29] Almeida Junior DR, Zilnyk KD, Raabe D, Sandim HRZ. Reconstructing the austenite parent microstructure of martensitic steels: A case study for reduced-activation Eurofer steels. J Nucl Mater. 2019;516:185–93.
  • [30] Kaibyshev R. Microstructural evolution in 9%Cr heat resistant steels under creep conditions. Mater Sci Forum. 2012;715–716:813–8.
  • [31] Demouche M, Ouakdi EH, Louahdi R. Effect of welding parameters in the microstructure and mechanical properties of friction-welded joints of 100Cr6 steel. Iran J Mater Sci Eng. 2019;16(3):24–31.
  • [32] Fonda RW, Knipling KE. Texture development in friction stir welds. Sci Technol Weld Join. 2011;16(4):288–94.
  • [33] Abbasi M, Nelson TW, Sorensen CD. Transformation and deformation texture study in friction stir processed API X80 pipeline steel. Metall Mater Trans A. 2012;43(13):4940–6.
  • [34] Mohsenzadeh MS, Mazinani M. On the yield point phenomenon in low-carbon steels with ferrite-cementite microstructure. Mater Sci Eng, A. 2016;673:193–203.
  • [35] Dieter GE. Mechanical metallurgy. New York: McGraw-Hill; 1986.
  • [36] Farabi N, Chen DL, Zhou Y. Tensile Properties and Work Hardening Behavior of Laser-Welded Dual-Phase Steel Joints. J Mater Eng Perform. 2012;21(2):222–30.
  • [37] Wang W, Dong Z, Xu Z, Zhu B, Zhang X, Zhong J, Zhang J. Local strain hardening behavior in a dissimilar metal welded joint with buttering layer of ultra-supercritical turbine rotor. Mater Sci Eng A. 2020;785:139379.
  • [38] Movahed P, Kolahgar S, Marashi SPH, Pouranvari M, Parvin N. The effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferrite-martensite dual phase steel sheets. Mater Sci Eng A. 2009;518(1):1–6.
  • [39] Ross PJ. Taguchi techniques for quality engineering: loss function, orthogonal experiments, parameter and tolerance design. New York: McGraw-Hill; 1988.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6e21240-632e-4a1e-b36d-73ca0b0c196a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.