PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Degradation of amine solvents used for CO2 removal from flue gas with high CO2 concentration

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the ethanolamine (MEA) solution, during the absorption and desorption of CO2 undesired compounds are produced as a result of degradation of an amine. Degradation not only reduces the absorption capacity of the solution but also leads to many operational problems. Furthermore, measuring of the degradation products is of great importance in terms of environmental issues. For the determination ofMEA degradation products, mainly chromatographic techniques are used, sometimes coupled with other instrumental methods, e.g. GC-MS. As a part of this work, research was conducted to identifyMEA thermal and oxidative degradation products and to develop a method for quantitative analysis of the main thermal degradation products such as OZD, HEIA and HEEDA and oxidative degradation products: HEA and HEI. Samples drawn from a test bench for CO2 capture from synthetic flue gas with an increased content of carbon dioxide were tested. As a research result, a method for the quantitative determination of the main degradation products was developed, the concentrations of degradation products and the rate of their formation were determined, which allows to qualify the solution shelf life.
Rocznik
Strony
115--124
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
autor
  • PhD; Institute for Chemical Processing of Coal, ul. Zamkowa 1, 41-803 Zabrze
  • MSc; Institute for Chemical Processing of Coal, ul. Zamkowa 1, 41-803 Zabrze
  • PhD; Institute for Chemical Processing of Coal, ul. Zamkowa 1, 41-803 Zabrze
  • MSc; Institute for Chemical Processing of Coal, ul. Zamkowa 1, 41-803 Zabrze
  • MSc; Institute for Chemical Processing of Coal, ul. Zamkowa 1, 41-803 Zabrze
Bibliografia
  • [1] Anderson, T. R., Hawkins, E., Jones, P. D. (2016). CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today’s Earth System Models. Endeavour, 40(3), 178-187.
  • [2] US Department of Commerce, N. (2005, October 01). Global Monitoring Laboratory - Carbon Cycle Greenhouse Gases. Retrieved from https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html
  • [3] Rackley, S., (2009). Carbon Capture and Storage. Gulf Professional Publishing.
  • [4] Spash, C. L. (2007). Nicholas Stern, The Economics of Climate Change. Environmental Values, 16(4), 532.
  • [5] Więcław-Solny, L., Ściążko,M., Tatarczuk, A., Krótki, A.,Wilk, A. (2011).Will CCS be cheaper? - New CO2 sorbents wanted. Polityka Energetyczna, 14, 441-453.
  • [6] Ksepko, E. (2015). Examining SrCuO2 as an oxygen carrier for chemical looping combustion. Journal of Thermal Analysis and Calorimetry, 122(2), 621-633.
  • [7] Ksepko, E. (2015). Feasible utility of inorganic remains from potable water purification process in chemical looping combustion studied in TG. Journal of Thermal Analysis and Calorimetry, 120(1), 457-470.
  • [8] Wang, Y., Zhao, L., Otto, A., Robinius, M., Stolten, D. (2017). A Review of Post-combustion CO2 Capture Technologies from Coal-fired Power Plants. Energy Procedia, 114, 650-665.
  • [9] Wang, M., Lawal, A., Stephenson, P., Sidders, J., Ramshaw, C. (2011). Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chemical Engineering Research and Design, 89(9), 1609-1624.
  • [10] Olajire, A. A. (2010). CO2 capture and separation technologies for end-of-pipe applications - A review. Energy, 35(6), 2610-2628.
  • [11] Ünveren, E. E., Monkul, B. O., Sarıoğlan, S., Karademir, N., Alper E. (2017). Solid amine sorbents for CO2 capture by chemical adsorption: A review. Petroleum, 3(1), 37-50.
  • [12] Xu, G., Li, L., Yang, Y., Tian, L., Liu, T., Zhang, K. (2012). A novel CO2 cryogenic liquefaction and separation system. Energy, 42(1), 522-529.
  • [13] Wilk, A., Więcław-Solny, L., Tatarczuk, A., Śpiewak, D., Krótki, A. (2013). Wpływ zmiany składu roztworu absorpcyjnego na efektywność procesu usuwania CO2 z gazów spalinowych (Effect of composition of absorption solution on carbon dioxide removal efficiency). Przemysł Chemiczny, 92(1), 120-125.
  • [14] Gouedard, C., Picq, D., Launay, F., Carrette, P.-L. (2012). Amine degradation in CO2 capture. I. A review. International Journal of Greenhouse Gas Control, 10, 244-270.
  • [15] Leupamier, H., Picq, D., Carrette, P. L. (2009). New amines for CO2 capture. II. Oxidative degradation mechanisms. Industrial & Engineering Chemistry Research, 48(20), 9068-9075.
  • [16] Krótki, A., Śpiewak, D., Więcław-Solny, L., Spietz, T., Tatarczuk, A. (2014). Badanie procesu usuwania CO2 metodą absorpcji aminowej w skali półtechnicznej (Research on carbon dioxide removal process using amine absorption method in a half-industrial scale). Inżynieria i Aparatura Chemiczna, 53(4), 265-266.
  • [17] Krótki, A., Tatarczuk, A.,Więcław-Solny, L., Stec,M., Sobolewski, A., Tokarski, S. (2014). Absorpcja CO w roztworach amin szansą obniżenia emisji krajowych elektrowni węglowych (CO amine absorption as an opportunity to reduce emissions from domestic coalfired power plants). Przemysł Chemiczny, 93(12), 2241-2245.
  • [18] Ziobrowski Z., Rotkegel, A. (2016). Pochłanianie ditlenku węgla w kolumnie wypełnionej zraszanej cieczą jonową (Removal of carbon dioxide in packed column sprinkled with ionic liquids). Przemysł Chemiczny, 95(9).
  • [19] Stec,M., Tatarczuk, A.,Więcław-Solny, L., Krótki, A., Spietz, T., Wilk, A., Śpiewak, D. (2016). Demonstration of a post-combustion carbon capture pilot plant using amine-based solvents at the Łaziska Power Plant in Poland. Clean Technologies and Environmental Policy, 18, 151-160.
  • [20] Niegodajew P., Asendrych, D. (2016). Amine based CO2 capture - CFD simulation of absorber performance. Applied Mathematical Modelling, 40(23), 10222-10237.
  • [21] Cuzuel, V., Gouedard, C., Cuccia, L., Brunet, J., Rey, A., Dugay, J., Vial, J., Perbost-Prigent, F., Ponthus, J., Pichon, V., Carrette, P.-L. (2015). Amine degradation in CO2 capture. 4. Development of complementary analytical strategies for a comprehensive identification of degradation compounds of MEA. International Journal of Greenhouse Gas Control, 42, 439-453.
  • [22] Martin, S., Lepaumier, H., Picq, D., Kittel, J., de Bruin, T., Faraj, A., Carrette, P.-L. (2012). New Amines for CO2 Capture. IV. Degradation, Corrosion, and Quantitative Structure Property Relationship Model. Industrial & Engineering Chemistry Research, 51(18), 6283-6289.
  • [23] Fytianos, G., Grimstvedt, A., Knuutila, H., Svendsen, H. F. (2014). Effect of MEA’s Degradation Products on Corrosion at CO2 Capture Plants. Energy Procedia, 63, 1869-1875.
  • [24] Chakma, A.,Meisen, A. (1987). Degradation of aqueous DEA solutions in a heat transfer tube. The Canadian Journal of Chemical Engineering, 65(2), 264-273.
  • [25] Liu, H., Namjoshi, O. A., Rochelle, G. T. (2014). Oxidative Degradation of Amine Solvents for CO2 Capture. Energy Procedia, 63, 1546-1557.
  • [26] Hatchell, D., Namjoshi, O., Fischer, K., Rochelle, G. T. (2014). Thermal Degradation of Linear Amines for CO2 Capture, Energy Procedia, 63, 1558-1568.
  • [27] Fredriksen S. B., Jens, K. J. (2013). Oxidative Degradation of Aqueous Amine Solutions of MEA, AMP, MDEA, PZ: A Review. Energy Procedia, 37, 1770-1777.
  • [28] Gouedard, C. (2014). Novel degradation products of ethanolamine (MEA) in CO2 capture conditions: identification, mechanisms proposal and transposition to other amines (PhD thesis, Pierre and Marie Curie University), France, Paris.
  • [29] Spietz, T., Stec, M., Tatarczuk, A., Więcław-Solny, L. (2015). Reduction of amines emission and their volatile degradation products. Chemik, 69(10), 625-634.
  • [30] Spietz, T., Dobras, S., Więcław-Solny, L., Krótki, A., (2017). Nitrosamines and nitramines in Carbon Capture plants. Environmental Protection and Natural Resources, 28(4), 43-50.
  • [31] Volkov, A., Vasilevsky, V., Bazhenov, S., Volkov, V., Rieder, A., Unterberger, S., Schallert, B. (2014). Reclaiming of Monoethanolamine (MEA) Used in Post-Combustion CO2-capture with Electrodialysis. Energy Procedia, 51, 148-153.
  • [32] Bazhenov, S., Vasilevsky, V., Rieder, A., Unterberger, S., Grushevenko, E., Volkov, V., Schallert, B., Volkov, A. (2014). Heat Stable Salts (HSS) Removal by Electrodialysis: Reclaiming of MEA Used in Postcombustion CO2-Capture. Energy Procedia, 63, 6349-6356.
  • [33] Vevelstad, S. J., Eide-Haugmo, I., da Silva, E. F., Svendsen, H. F. (2011). Degradation of MEA: a theoretical study. Energy Procedia, 4, 1608-1615.
  • [34] Strazisar, B. R., Anderson, R. R., White, C. M. (2003). Degradation Pathways for Monoethanolamine in a CO2 Capture Facility. Energy Fuels, 17(4), 1034-1039.
  • [35] Lepaumier, H., Martin, S., Picq, D., Delfort, B., Carrette, P.-L. (2010). New Amines for CO2 Capture. III. Effect of Alkyl Chain Length between Amine Functions on Polyamines Degradation. Industrial and Engineering Chemistry Research, 49(10), 4553-4560.
  • [36] Krótki, A.,Więcław-Solny, L., Tatarczuk, A., Stec,M., Wilk, A., Spiewak, D., Spietz, T. (2016). Laboratory Studies of Post-combustion CO2 Capture by Absorption with MEA and AMP Solvents. Arabian Journal for Science and Engineering, 41(2), 371-379.
  • [37] Knudsen, J. N., Jensen, J. N., Vilhelmsen, P.-J., Biede, O. (2009). Experience with CO2 capture from coal flue gas in pilot-scale: Testing of different amine solvents. Energy Procedia, 1(1), 783-790.
  • [38] Moser, P., Schmidt, S., Stahl, K. (2011). Investigation of trace elements in the inlet and outlet streams of a MEA-based post-combustion capture process results from the test programme at the Niederaussem pilot plant. Energy Procedia, 4, 473-479.
  • [39] Reynolds, A.J., Verheyen, T. V., Adeloju, S. B., Meuleman, E., Chaffee, A., Cottrell, A. J., Feron, P. (2013). Chemical Characterization of MEA Degradation in PCC pilot plants operating in Australia. Energy Procedia, 37, 877-882.
  • [40] Reynolds, A.J., Verheyen, T. V., Adeloju, S. B., Meuleman, E., Feron, P. (2012). Towards Commercial Scale Postcombustion Capture of CO2 with Monoethanolamine Solvent: Key Considerations for Solvent Management and Environmental Impacts. Environmental Science and Technology, 46(7), 3643-3654.
  • [41] Lepaumier, H., da Silva, E. F., Einbu, A., Grimstvedt, A., Knudsen, J. N., Zahlsen, K., Svendsen, H. F. (2011). Comparison of MEA degradation in pilotscale with lab-scale experiments. Energy Procedia, 4, 1652-1659.
  • [42] Goff, G. S., Rochelle, G. T. (2004). Monoethanolamine Degradation: O2 Mass Transfer Effects under CO2 Capture Conditions. Industrial and Engineering Chemistry Research, 43(20), 6400-6408.
  • [43] Shen K. P., Li, M. H., (1992). Solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine. Journal of Chemical and Engineering Data, 37(1), 96-100.
  • [44] Krzemień, A., Więckol-Ryk, A., Smoliński, A., Koteras, A., Więcław-Solny, L. (2016). Assessing the risk of corrosion in amine-based CO2 capture process. Journal of Loss Prevention in the Process Industries, 43, 189-197.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6e15a23-854d-4d41-8125-fed67152d523
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.