Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Poland's mixed municipal waste management system has been based on mechanical-biological treatment (MBT). One of the MBT processes is the biological stabilisation of fractions of less than 80 mm. The final product after biological stabilisation is a stabiliser that, once the conditions required by law are met, can be landfilled. The stabilizer must meet the following requirements: the loss of ignition (LOI) of the stabiliser is less than 35% DM, the organic carbon content is less than 20% DM and the AT4 value (aerobic 4-day respiration test) value is less than 10 mgO2/g DM. The study aimed to analyse the changes that occurred during the first 4 weeks of biological processing of the fraction of less than 80 mm of mixed municipal waste. The bioreactor feedstock consisted of 41.7% organic fraction (OF), the LOI was 32.3%, and the AT4 value was 45.7 mgO2/g DM. During biological processing, at 4 weeks, the loss of OF in the total weight of the waste was found to be 22.6%, the losses after roasting decreased by almost 90% and the value of AT4 was 6.6 mgO2/g DM. This means that the stabiliser already after 4 weeks, according to the law, could be sent to a landfill.
Czasopismo
Rocznik
Tom
Strony
163--170
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
- Associate Prof., DSc Eng.; Institute of Agricultural Sciences, Land Management and Environmental Protection,College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
Bibliografia
- [1] https://ec.europa.eu/eurostat/databrowser/view/env_wasmun/default/table?lang=en (access: 10.05.2023).
- [2] Environmental Protection 2021. Główny Urząd Statystyczny. Warszawa 2021.
- [3] Połomka, J., Dronia, W., & Jędrczak, A. (2023). Use of a novel water separation process for the recovery of the mineral fraction from the stabilized organic fraction found in municipal waste. Waste Management & Research: The Journal for a Sustainable Circular Economy, 41, 997–1003. doi: 10.1177/0734242X221140030
- [4] National Waste Management Plan 2028, https://bip.mos.gov.pl/strategie-plany-programy/krajowy-plan-gospodarki-odpadami/projekt-uch-waly-rady-ministrow-w-sprawie-krajowego-planugospodarki-odpadami-2028/ (access: 10.05.2023).
- [5] Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 amending Directive 2008/98/EC on waste (Text with EEA relevance) (Official Journal of the European Union L150/109).
- [6] The Market for Mechanical Biological Waste Treatment in Europe (2017) 2nd edn. Cologne, Germany: Mai Ecoprog GmbH. Available at: https://www.ecoprog.com/index.html (accessed 10.05.2023).
- [7] Siemiątkowski G. (ed.). (2012). Mechanical-biological treatment of the biodegradable fraction of municipal waste (Mechaniczno-biologiczne przetwarzanie frakcji biodegradowalnej odpadów komunalnych)
- [8] Regulation of the Minister of Climate and Environment on MBT, i.e. mechanical-biological treatment of unsorted (mixed) municipal waste. Journal of Laws 2023, item 56.
- [9] PN-Z-15011-1:1998 – Compost from municipal waste. Collection of samples (Kompost z odpadów komunalnych. Pobieranie próbek).
- [10] Greenberg, A.E., Clesceri, L.S., & Eaton, A.D. (1992). Standard Methods for the examination of water and wastewater, APHA, Washington, 18th ed.
- [11] ÖNORM-Serie S 2027 Beurteilung von Abfällen aus der mechanisch-biologischen Behandlung.
- [12] Połomka, J., & Jędrczak, A., (2019). Efficiency of waste processing in the MBT system. Waste Management, 96, 9–14. doi:10.1016/j.wasman.2019.06.041.
- [13] Dias, N., Belo, N., Máximo, A. & Carvalho, M.T. (2014). Recovery of glass contained in the heavy residual fraction of Portuguese mechanical Biological Treatment Plants. Journal of Cleaner Production, 79, 271–275. doi: 10.1016/j.jclepro.2014.05.028
- [14] Bernat, K., Wojnowska-Baryła, I., Zaborowska, M., & Samul, I. (2021). Insight into the Composition of the Stabilized Residual from a Full-Scale Mechanical-Biological Treatment (MBT) Plant in Terms of the Potential Recycling and Recovery of Its Contaminants. Sustainability, 13, 5432. doi: 10.3390/su13105432
- [15] Bernat, K., Zielińska, M., Cydzik-Kwiatkowska, A. & Wojnowska-Baryła, I. (2015). Biogas production from different size fractions separated from solid waste and the accompanying changes in the community structure of methanogenic Archaea. Biochemical Engineering Journal, 100, 30–40. doi: 10.1016/j.bej.2015.04.011
- [16] Jędrczak, A., Myszograj, S., & Połomka, J. (2020). The composition and properties of Polish waste focused on biostabilisation in MBT plants during the heating season. Energies, 13, 1072. doi: 10.3390/en13051072
- [17] Połomka, J., & Jędrczak, A. (2019). Efficiency of waste processing in the MBT system. Waste Management, 96, 9–14. doi: 10.1016/j.wasman.2019.06.041
- [18] Sidełko, R., Siebielska, I., Janowska, B., & Skubała, A. (2017). Assessment of biological stability of organic waste processed under aerobic conditions. Journal of Cleaner Production, 164, 1563–1570. doi: 10.1016/j.jclepro.2017.07.035
- [19] Białowiec, A 2018. Oxygen biostabilisation of municipal waste. Wrocław: Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu
- [20] Waste Act (Journal of Laws of 2022, item 699)
- [21] Sidełko, R., Siebielska, I., Szymański, K., Skubała, A., & Kołacz, N. (2014). Real-time assessment of compost stability. Engineering and Environmental Protection, 17, 221–230.
- [22] Jędrczak, A 2007. Biologiczne przetwarzanie odpadów (Biological transformation of waste). Warszawa: Wydawnictwo Naukowe PWN.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6de3264-406e-4a2d-8aed-8594383598fb