PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of rhenium addition on microstructural characteristics and mechanical performance in Powder Bed Fusion‑Laser Beam produced Inconel 625 alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recent studies have highlighted the beneficial role of rhenium in enhancing the properties of superalloys. Even a slight alloying addition of rhenium can lead to a significant improvement in mechanical properties, particularly at elevated temperatures. This finding is particularly intriguing in the context of powder-based additive manufacturing techniques, which enable the utilization of powder mixtures to create metal matrix composites (MMCs) or facilitate in situ alloying. The primary objective of the current research was to examine the impact of rhenium on the powder bed fusion-laser beam (PBF-LB) process of IN 625, a specific alloy. Despite its limited solubility in the as-built state, the addition of rhenium was found to have a notable influence on increasing the ultimate tensile strength (UTS). This effect became even more pronounced after heat treatment (solution treatment), which induced a higher dispersion of rhenium and other precipitates within the material. The experimental results demonstrated that the specimen with the addition of rhenium exhibited a remarkable UTS of 900 MPa, in contrast to the 700 MPa exhibited by the wrought material. This research clearly showcases that, despite its poor dispersion characteristics, the incorporation of rhenium can lead to a substantial increase in the strength of the material.
Słowa kluczowe
Rocznik
Strony
art. no. e103, 2024
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141 Str., 02‑507 Warsaw, Poland
autor
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141 Str., 02‑507 Warsaw, Poland
autor
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141 Str., 02‑507 Warsaw, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141 Str., 02‑507 Warsaw, Poland
autor
  • Łukasiewicz Research Network-Cracow Technology Institute, Zakopianska 73 Str., 30‑418 Cracow, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141 Str., 02‑507 Warsaw, Poland
Bibliografia
  • 1. Zhang YC, Jiang W, Tu ST, Zhang XC, Ye YJ, Wang RZ. Experimental investigation and numerical prediction on creep crack growth behavior of the solution treated Inconel 625 superalloy. Eng Fract Mech. 2018;199:327-42. https://doi.org/10.1016/j.engfracmech.2018.05.048.
  • 2. Bao HS, Gong ZH, Chen ZZ, Yang G. Evolution of precipitates in Ni-Co-Cr-W-Mo superalloys with different tungsten contents. Rare Met. 2020;39:716-24. https://doi.org/10.1007/s12598-020-01400-w.
  • 3. Sampath Kumar S, Maheswaran CB, Bharathi Kannan TD. Experimental investigation on a pulsed TIG welding of Inconel 625. Mater Today Proc. 2020. https://doi.org/10.1016/j.matpr.2020.09.724.
  • 4. de Sousa Malafaia AM, de Oliveira RB, Latu-Romain L, Wouters Y, Baldan R. Isothermal oxidation of Inconel 625 superalloy at 800 and 1000 °C: microstructure and oxide layer characterization. Mater Charact. 2020;161:110160. https://doi.org/10.1016/j.matchar.2020.110160.
  • 5. Pedrazzini S, Kiseeva ES, Escoube R, Gardner HM, Douglas JO, Radecka A, Mignanelli PM, Hughes GM, Chapman G, Edmondson PD, Stone HJ, De Lille D, Bagot PAJ. In-service oxidation and microstructural evolution of a nickel superalloy in a formula 1 car exhaust. Oxid Met. 2018;89:375-94. https://doi.org/10.1007/s11085-017-9792-7.
  • 6. Kumar KG, Ramkumar KD, Arivazhagan N. Characterization of metallurgical and mechanical properties on the multi-pass welding of Inconel 625 and AISI 316L. J Mech Sci Technol. 2015;29:1039-47. https://doi.org/10.1007/s12206-014-1112-4.
  • 7. Rush MT, Colegrove PA, Zhang Z, Broad D. Liquation and post-weld heat treatment cracking in Rene 80 laser repair welds. J Mater Process Technol. 2012. https://doi.org/10.1016/j.jmatprotec.2011.09.001.
  • 8. Lachowicz M, Dudziński W, Haimann K, Podrez-Radziszewska M. Microstructure transformations and cracking in the matrix of γ-γ′ superalloy Inconel 713C melted with electron beam. Mater Sci Eng A. 2008. https://doi.org/10.1016/j.msea.2007.06.064.
  • 9. Shitarev IL, Smelov VG, Sotov AV. Repair of a gas turbine blade tip by impulse laser build-up welding. Appl Mech Mater. 2014;682:96-9. https://doi.org/10.4028/www.scientific.net/AMM.682.96.
  • 10. Sow MC, De Terris T, Castelnau O, Hamouche Z, Coste F, Fabbro R, Peyre P. Influence of beam diameter on Laser Powder Bed Fusion (L-PBF) process. Addit Manuf. 2020;36: 101532. https://doi.org/10.1016/j.addma.2020.101532.
  • 11. Stoll P, Spierings A, Wegener K. SLM processing of elementally blended NiTi shape memory alloy. Procedia CIRP. 2020;95:121-6. https://doi.org/10.1016/j.procir.2020.02.250.
  • 12. Sowa R, Arabasz S, Parlinska-Wojtan M. Classification and microstructural stability of high generation single crystal Nickel-based superalloys. Zast Mater. 2016. https://doi.org/10.5937/zasmat1602274s.
  • 13. Kurzynowski T, Smolina I, Kobiela K, Kuźnicka B, Chlebus E. Wear and corrosion behaviour of Inconel 718 laser surface alloyed with rhenium. Mater Des. 2017;132:349-59. https://doi.org/10.1016/j.matdes.2017.07.024.
  • 14. Ghasemi R, Valefi Z. Electrodeposition of rhenium-base layer as a diffusion barrier between the NiCoCrAlY coating and a Ni-based superalloy. J Alloys Compd. 2018;732:470-85. https://doi.org/10.1016/j.jallcom.2017.10.230.
  • 15. Wollgramm P, Buck H, Neuking K, Parsa AB, Schuwalow S, Rogal J, Drautz R, Eggeler G. On the role of Re in the stress and temperature dependence of creep of Ni-base single crystal superalloys. Mater Sci Eng A. 2015;628:382-95. https://doi.org/10.1016/j.msea.2015.01.010.
  • 16. Gao S, Fivel M, Ma A, Hartmaier A. 3D discrete dislocation dynamics study of creep behavior in Ni-base single crystal superalloys by a combined dislocation climb and vacancy diffusion model. J Mech Phys Solids. 2017;102:209-23. https://doi.org/10.1016/j.jmps.2017.02.010.
  • 17. Mottura A, Finnis MW, Reed RC. On the possibility of rhenium clustering in nickel-based superalloys. Acta Mater. 2012;60:2866-72. https://doi.org/10.1016/j.actamat.2012.01.051.
  • 18. Epishin A. Influence of small rhenium additions on the lattice spacing of nickel solid solution. Scr Mater. 2003;48:455-9. https://doi.org/10.1016/S1359-6462(02)00436-0.
  • 19. Tabernig B, Reheis N. Joining of molybdenum and its application. Int J Refract Met Hard Mater. 2010;28:728-33. https://doi.org/10.1016/j.ijrmhm.2010.06.008.
  • 20. Kindrachuk V, Wanderka N, Banhart J, Mukherji D, Del Genovese D, Rosler J. Effect of rhenium addition on the microstructure of the superalloy Inconel 706. Acta Mater. 2008;56:1609-18. https://doi.org/10.1016/j.actamat.2007.12.010.
  • 21. Majchrowicz K, Pakieła Z, Kamiński J, Płocińska M, Kurzynowski T, Chlebus E. The effect of rhenium addition on microstructure and corrosion resistance of inconel 718 processed by selective laser melting. Metall Mater Trans A Phys Metall Mater Sci. 2018;49:6479-89. https://doi.org/10.1007/s11661-018-4926-3.
  • 22. El-Bagoury N, Yamamoto K, Ogi K. Effect of rhenium on solidification of Inconel 718 alloy. Mater Sci Technol. 2005;21:204-10. https://doi.org/10.1179/174328405X20923.
  • 23. Körner C, Ramsperger M, Meid C, Bürger D, Wollgramm P, Bartsch M, Eggeler G. Microstructure and mechanical properties of CMSX-4 single crystals prepared by additive manufacturing. Metall Mater Trans A Phys Metall Mater Sci. 2018;49:3781-92. https://doi.org/10.1007/s11661-018-4762-5.
  • 24. Bochenek K, Węglewski W, Morgiel J, Basista M. Influence of rhenium addition on microstructure, mechanical properties and oxidation resistance of NiAl obtained by powder metallurgy. Mater Sci Eng A. 2018;735:121-30. https://doi.org/10.1016/j.msea.2018.08.032.
  • 25. Li X, Yi D, Liu B, Zhang J, Yang X, Wang C, Feng Y, Bai P, Liu Y, Qian M. Graphene-strengthened Inconel 625 Alloy Fabricated by Selective Laser Melting. Mater Sci Eng A. 2020;798: 140099. https://doi.org/10.1016/j.msea.2020.140099.
  • 26. Chen L, Sun Y, Li L, Ren X. Improvement of high temperature oxidation resistance of additively manufactured TiC/Inconel 625 nanocomposites by laser shock peening treatment. Addit Manuf. 2020;34: 101276. https://doi.org/10.1016/j.addma.2020.101276.
  • 27. Zhang B, Bi G, Wang P, Bai J, Chew Y, Nai MS. Microstructure and mechanical properties of Inconel 625/nano-TiB2 composite fabricated by LAAM. Mater Des. 2016;111:70-9. https://doi.org/10.1016/j.matdes.2016.08.078.
  • 28. Rao H, Oleksak RP, Favara K, Harooni A, Dutta B, Maurice D. Behavior of yttria-stabilized zirconia (YSZ) during laser direct energy deposition of an Inconel 625-YSZ cermet. Addit Manuf. 2020;31: 100932. https://doi.org/10.1016/j.addma.2019.100932.
  • 29. Tian Y, Ouyang B, Gontcharov A, Gauvin R, Lowden P, Brochu M. Microstructure evolution of Inconel 625 with 0.4 wt% boron modification during gas tungsten arc deposition. J Alloys Compd. 2017;694:429-38. https://doi.org/10.1016/j.jallcom.2016.10.019.
  • 30. Zhou S, Xu T, Hu C, Wu H, Liu H, Ma X. A comparative study of tungsten carbide and carbon nanotubes reinforced Inconel 625 composite coatings fabricated by laser cladding. Opt Laser Technol. 2021;140: 106967. https://doi.org/10.1016/j.optlastec.2021.106967.
  • 31. Patterson AE, Messimer SL, Farrington PA. Overhanging features and the SLM/DMLS residual stresses problem: review and future research need. Technologies. 2017;5:15. https://doi.org/10.3390/technologies5020015.
  • 32. Todaro CJ, Easton MA, Qiu D, Zhang D, Bermingham MJ, Lui EW, Brandt M, Stjohn DH, Qian M. Grain structure control during metal 3D printing by high-intensity ultrasound. Nat Commun. 2020. https://doi.org/10.1038/s41467-019-13874-z.
  • 33. Brynk T, Pakiela Z, Ludwichowska K, Romelczyk B, Molak RM, Plocinska M, Kurzac J, Kurzynowski T, Chlebus E. Fatigue crack growth rate and tensile strength of Re modified Inconel 718 produced by means of selective laser melting. Mater Sci Eng A. 2017;698:289-301. https://doi.org/10.1016/j.msea.2017.05.052.
  • 34. Li S, Wei Q, Shi Y, Zhu Z, Zhang D. Microstructure characteristics of Inconel 625 superalloy manufactured by selective laser melting. J Mater Sci Technol. 2015;31:946-52.
  • 35. Nguejio J, Szmytka F, Hallais S, Tanguy A, Nardone S, et al. Comparison of microstructure features and mechanical properties for additive manufactured and wrought nickel alloys 625. Mater Sci Eng: A. 2019;764:138214. https://doi.org/10.1016/j.msea.2019.138214.
  • 36. Chlebus E, Kuźnicka B, Dziedzic R, Kurzynowski T. Titanium alloyed with rhenium by selective laser melting. Mater Sci Eng A. 2015;620:155-63. https://doi.org/10.1016/j.msea.2014.10.021.
  • 37. Skoczylas P, Kaczorowski M. Preliminary study of the rhenium addition on the structure and mechanical properties of tungsten heavy alloy. Materials (Basel). 2021;14:7365. https://doi.org/10.3390/ma14237365.
  • 38. Majchrowicz K, Pakieła Z, Moszczyńska D, Kurzynowski T, Chlebus E. Hot corrosion of Ti-Re alloys fabricated by selective laser melting. Oxid Met. 2018;90:83-96. https://doi.org/10.1007/s11085-017-9825-2.
  • 39. Wu X, Makineni SK, Liebscher CH, Dehm G, Rezaei Mianroodi J, Shanthraj P, Svendsen B, Burger D, Eggeler G, Raabe D, Gault B. Unveiling the Re effect in Ni-based single crystal superalloys. Nat Commun. 2020;11:389. https://doi.org/10.1038/s41467-019-14062-9.
  • 40. Mottura A, Reed RC. What is the role of rhenium in single crystal superalloys? Matec Web Conf. 2014;14:01001. https://doi.org/10.1051/matecconf/20141401001.
  • 41. Smolina I, Kobiela K. Characterization of wear and corrosion resistance of Stellite 6 Laser Surfaced Alloyed (LSA) with rhenium. Coatings. 2021;11:292. https://doi.org/10.3390/coatings11030292.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6d66b7e-0dac-405c-938f-d7f82ee39691
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.