PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of strong motion record baseline drift based on Bayesian-optimized Transformer network

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Research in earthquake engineering heavily relies on strong motion observation. The quality of strong motion records directly affects the reliability of earthquake disaster prevention, rapid reporting of seismic magnitude, earthquake early warning, and other areas. Currently, basic mathematical methods, such as zero-line adjustment and filtering, are commonly employed to ensure the quality of strong motion records. However, these methods often rely on subjective judgment based on human experience when dealing with abnormal waveforms in strong motion records, leading to relatively low efficiency. To address this challenge, this paper proposes an innovative Transformer model based on Bayesian optimization to efficiently identify baseline drift anomalies in strong motion records. By partitioning the strong motion record data from the 1999 Chi- Chi earthquake in Taiwan, China, into two categories: high-quality records (with minimal baseline drift) and low-quality records (with significant baseline drift), we extracted data with distinct features and inputted them into the proposed model for training. Data with distinct features were extracted and input into the proposed model for training. Finally, the model was used to predict whether strong motion records exhibited baseline drift abnormalities. The experimental results show that the optimized Transformer model achieves a performance exceeding 85% in key evaluation metrics such as accuracy and F1 scores. It is capable of efficiently identifying a substantial volume of strong motion records with baseline drift within a short period of time. The model effectively performs the baseline drift classification task for strong motion records and can be used for subsequent identification of abnormalities after baseline drift correction, enabling automation in handling abnormal data related to baseline drift.
Czasopismo
Rocznik
Strony
517--525
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
  • Key Laboratory of Earthquake Engineering and Engineering Motion, Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China
  • Key Laboratory of Earthquake Disaster Mitigation, Ministry of Emergency Management, Harbin 150080, China
autor
  • Key Laboratory of Earthquake Engineering and Engineering Motion, Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China
  • Key Laboratory of Earthquake Disaster Mitigation, Ministry of Emergency Management, Harbin 150080, China
autor
  • Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin 541004, China
  • School of Information Engineering, Institute of Disaster Prevention, Langfang 065201, China
autor
  • Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin 541004, China
  • School of Information Engineering, Institute of Disaster Prevention, Langfang 065201, China
autor
  • Key Laboratory of Earthquake Engineering and Engineering Motion, Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China
  • Key Laboratory of Earthquake Disaster Mitigation, Ministry of Emergency Management, Harbin 150080, China
autor
  • School of Information Engineering, Institute of Disaster Prevention, Langfang 065201, China
Bibliografia
  • 1. Akkar S, Sandikkaya MA, Şenyurt M et al (2014) Reference database for seismic ground-motion in Europe (RESORCE). Bull Earthq Eng 12:311-339. https://doi.org/10.1007/s10518-013-9506-8
  • 2. Ancheta T, Darragh R, Stewart J et al (2013) PEER NGA-West2 Database, PEER Report 2013/03, Pacific Earthquake Engineering Research Center. University of California, Berkeley
  • 3. Bellagamba X, Lee R, Bradley BA (2019) A neural network for automated quality screening of ground motion records from small magnitude earthquakes. Earthq Spectra 35:1637-1661. https://doi.org/10.1193/122118EQS292M
  • 4. Boore DM (2001) Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi-Chi, Taiwan, Earthquake. Bull Seismol Soc Am 91:1199-1211. https://doi.org/10.1785/0120000703
  • 5. Boore DM, Bommer JJ (2005) Processing of strong-motion accelerograms: needs, options and consequences. Soil Dyn Earthq Eng 25:93-115. https://doi.org/10.1016/j.soildyn.2004.10.007
  • 6. Boore DM (1999) Effect of baseline corrections on response spectra for two recordings of the 1999 Chi-Chi, Taiwan, earthquake
  • 7. Chen Y (2020) Automatic microseismic event picking via unsupervised machine learning. Geophys J Int 222:1750-1764. https://doi.org/10.1093/gji/ggaa186
  • 8. Chen Y, Zhang M, Bai M, Chen W (2019) Improving the signal-to- noise ratio of seismological datasets by unsupervised machine learning. Seismol Res Lett 90:1552-1564. https://doi.org/10.1785/0220190028
  • 9. Chollet F, et al., (2015) Keras. https://keras.io
  • 10. Dawood HM, Rodriguez-Marek A, Bayless J et al (2016) A flatfile for the KiK-net database processed using an automated protocol. Earthq Spectra 32:1281-1302
  • 11. Dong S, Li Z, Feng Hu, Zhenjiang Yu, Chen X (2023) Trace- Net: an effective deep-learning-based method for baseline
  • 12. correction of near-field acceleration records. Seismolog Res Letters 94(3):1656-1669. https://doi.org/10.1785/0220220272
  • 13. Iwan WD, Moser MA, Peng C-Y (1985) Some observations on strong-motion earthquake measurement using a digital accelerograph. Bull Seismol Soc Am 75:1225-1246. https://doi.org/10.1785/BSSA0750051225
  • 14. Katsanos EI, Sextos AG, Manolis GD (2010) Selection of earthquake ground motion records: A state-of-the-art review from a structural engineering perspective. Soil Dyn Earthq Eng 30:157-169. https://doi.org/10.1016/j.soildyn.2009.10.005
  • 15. Kuang W, Yuan C, Zhang J (2021) Real-time determination of earthquake focal mechanism via deep learning. Nat Commun 12:1432. https://doi.org/10.1038/s41467-021-21670-x
  • 16. Luzi L, Puglia R, Russo E et al (2016) The engineering strong-motion database: a platform to access pan-European accelerometric data. Seismol Res Lett 87:987-997. https://doi.org/10.1785/0220150278
  • 17. Meier M-A, Ross ZE, Ramachandran A et al (2019) Reliable realtime seismic signal/noise discrimination with machine learning. J Geophys Res: Solid Earth 124:788-800. https://doi.org/10.1029/2018JB016661
  • 18. Musson RMW (1998) Intensity assignments from historical earthquake data: issues of certainty and quality. Ann Geophys 41:79-91. https://doi.org/10.4401/ag-3795
  • 19. OpenAI R (2023) GPT-4 technical report. arXiv 2303-08774
  • 20. Pacor F, Paolucci R, Ameri G et al (2011) Italian strong motion records in ITACA: overview and record processing. Bull Earthq Eng 9:1741-1759. https://doi.org/10.1007/s10518-011-9295-x
  • 21. Shahriari B, Swersky K, Wang Z et al (2016) Taking the human out of the loop: a review of bayesian optimization. Proc IEEE 104:148- 175. https://doi.org/10.1109/JPROC.2015.2494218
  • 22. Shan W, Zhang M, Wang M et al (2022) EPM-DCNN: earthquake prediction models using deep convolutional neural networks. Bull Seismol Soc Am 112:2933-2945. https://doi.org/10.1785/01202 20058
  • 23. Shang Q, Guo X, Li Q et al (2020) A benchmark city for seismic resilience assessment. Earthq Eng Eng Vib 19:811-826. https://doi.org/10.1007/s11803-020-0597-3
  • 24. Somerville PG, Smith NF, Graves RW, Abrahamson NA (1997) Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity. Seismol Res Lett 68:199-222. https://doi.org/10.1785/gssrl. 68.1.199
  • 25. Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is All you Need. In: Guyon I, Luxburg UV, Bengio S, et al. (eds) Advances in Neural Information Processing Systems. Curran Associates, Inc
  • 26. Wang M, Shen J, Pan ZA, Han DL (2019) An improved supported vector regression algorithm with application to predict after- shocks. J Seismolog 23:983-993. https://doi.org/10.1007/s10950-019-09848-9
  • 27. Xin-xin Y, Ye-fei R, Tadahiro K, et al (2022) The procedure of filtering the strong motion record: Denoising and filtering. 39: 320-329. https://doi.org/10.6052/j.issn.1000-4750.2021.05.S058
  • 28. Xu Z, Chen J, Shen J, Xiang M (2022) Recursive long short-term memory network for predicting nonlinear structural seismic response. Eng Struct 250:113406. https://doi.org/10.1016/j.engstruct.2021.113406
  • 29. Youngs RR, Chiou S-J, Silva WJ, Humphrey JR (1997) Strong ground motion attenuation relationships for subduction zone earthquakes. Seismol Res Lett 68:58-73. https://doi.org/10.1785/gssrl.68.1.58
  • 30. Yu HY, Wang WB, Xie QC, Ma YC (2022) Zero-baseline correction method for near-fault strong motion records based on long-term and short-term memory model LSTM. Earthq Eng Eng Dyn 42:35-42. https://doi.org/10.13197/j.eeed.2022.0405
  • 31. Zhao L-S, Helmberger DV (1994) Source estimation from broadband regional seismograms. Bull Seismol Soc Am 84:91-104. https://doi.org/10.1785/BSSA0840010091
  • 32. Zhenghui X, Xiaojun Li, Zhijun D, Chen Su (2019) A method for identifying the baseline drift of strong-motion records based on L1-norm regularization. Acta Seismol Sin 41(1):111-123. https://doi.org/10.11939/jass.20180072
  • 33. Zhou BF, Song TS, Wen RZ, Xie LL (2014) Permanent displacement identification analysis in 2011 Mw9.0 Tohoku earthquake. Japan Appl Mech Mater 580-583:1533-1537. https://doi.org/10.4028/www.scientific.net/AMM.580-583.1533
  • 34. Zhou B, Wang H, Xie L, Wang Y (2015) Bizarre waveforms in strong motion records. Shock Vib 2015:630362. https://doi.org/10.1155/2015/630362
  • 35. Zhu W, Beroza GC (2019) PhaseNet: a deep-neural-network-based seismic arrival-time picking method. Geophys J Int 216:261-273. https://doi.org/10.1093/gji/ggy423
  • 36. Zhu W, Mousavi SM, Beroza GC (2019) Seismic signal denoising and decomposition using deep neural networks. IEEE Trans Geosci Remote Sens 57:9476-9488. https://doi.org/10.1109/TGRS.2019.2926772
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6d43c2a-e10f-4455-ac51-5f6f06079a0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.