Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
A continuous variable-quantum key distribution system prototype that uses weak coherent states with a diffused phase, commercial off-the-shelf devices, complete free space 90-degrees hybrid and simplified quantum protocol is proposed in this paper. In general, the quantum transmitter-receiver shows an experimental average quantum bit error rate of 30% using auto-homodyne detection with 0.25 photons per pulse in locking phase mode. The emulated final secret key rate measurements were 20 and 40 Kbps for minimum (30 Mbps) and maximum (90 Mbps) throughput, respectively, in a real traffic network using databases for the quantum keys generated by two true random number generators.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
411--419
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
- Center of Excellence in Innovation and Design, Center for Higher and Technical Education (CETYS University), Camino a Microondas Trinidad s/n. Km. 1, Moderna Oeste, 22860 Ensenada, BC. México
autor
- Center of Excellence in Innovation and Design, Center for Higher and Technical Education (CETYS University), Camino a Microondas Trinidad s/n. Km. 1, Moderna Oeste, 22860 Ensenada, BC. México
autor
- Department of Applied Physics, CICESE Research Center, Baja California, México,Carret. Ens.-Tij. 3918, Zona Playitas, Ensenada, B.C. 22860, México
autor
- Department of Applied Physics, CICESE Research Center, Baja California, México,Carret. Ens.-Tij. 3918, Zona Playitas, Ensenada, B.C. 22860, México
autor
- Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, AL, 35487, USA
autor
- Center of Excellence in Innovation and Design, Center for Higher and Technical Education (CETYS University), Camino a Microondas Trinidad s/n. Km. 1, Moderna Oeste, 22860 Ensenada, BC. México
Bibliografia
- [1] TAKEOKA M., GUHA S., WILDE M.M., Fundamental rate-loss tradeoff for optical quantum key distribution, Nature Communications 5, 2014, article ID 5235.
- [2] FEIHU XU, CURTY M., BING QI, LI QIAN, HOI-KWONG LO, Discrete and continuous variables for measurement-device-independent quantum cryptography, Nature Photonics 9, 2015, pp. 772–773.
- [3] LAM P.K., RALPH T.C., Quantum cryptography: continuous improvement, Nature Photonics 7, 2013, pp. 350–352
- [4] TIMOFEEV A.V., MOLOTKOV S.N., On the privacy-preserving cascade method for correcting errors in primary keys in quantum cryptography, Journal of Experimental and Theoretical Physics Letters 82(12), 2005, pp. 768–772
- [5] AL-DAOUD E., Comparing two quantum protocols: BB84 and SARG04, European Journal of Scientific Research 17(1), 2007, pp. 25–30.
- [6] HAMRICK G., Secrecy, computational loads and rates in practical quantum cryptography, Algorithmica 34(4), 2002, pp. 314–339.
- [7] DIXON A.R., SATO H., High speed and adaptable error correction for megabit/s rate quantum key distribution, Scientific Reports 4, 2014, article ID 7275.
- [8] HONG-FEI ZHANG, JIAN WANG, KE CUI, CHUN-LI LUO, SHENG-ZHAO LIN, LEI ZHOU, HAO LIANG, TENG-YUN CHEN, KAI CHEN, JIAN-WEI PAN, A real-time QKD system based on FPGA, Journal of Lightwave Technology 30(20), 2012, pp. 3226–3234.
- [9] ZHANG Q., TAKESUE H., HONJO T., WEN K., HIROHATA T., SUYAMA M., TAKIGUCHI Y., KAMADA H., TOKURA Y., TADANAGA O., Megabits secure key rate quantum key distribution, New Journal of Physics 11, 2009, article ID 045010.
- [10] FUJIWARA M., ISHIZUKA H., MIKI S., YAMASHITA T., WANG Z., TANAKA A., YOSHINO K., NAMBU Y., TAKAHASHI S., TAJIMA A., TOMITA A., HASEGAWA T., TSURUMARU T., MATSUI M., HONJO T., TAMAKI K., TOKURA Y., SASAKI M., Field demonstration of quantum key distribution in the Tokyo QKD Network, International Quantum Electronics Conference, Sydney, Australia, 2011.
- [11] JAKOBI M., SIMON C., GISIN N., BANCAL J-D., BRANCIARD C., WALENTA N., ZBINDEN H., Practical private database queries based on a quantum-key-distribution protocol, Physical Review A 83(2), 2011, article ID 022301.
- [12] PANDURANGA RAO M.V., JAKOBI M., Towards communication-efficient quantum oblivious key distribution, Physical Review A 87(1), 2013, article ID 012331.
- [13] ZHIYUAN TANG, ZHONGFA LIAO, FEIHU XU, BING QI, LI QIAN, HOI-KWONG LO, Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution, Physical Review Letters 112(19), 2014, article ID 190503.
- [14] DULIGALL J.L., GODFREY M.S., HARRISON K.A., MUNRO W.J., RARITY J.G., Low cost and compact quantum key distribution, New Journal of Physics 8, 2006, article ID 249.
- [15] LOPEZ LEYVA J.A., ARVIZU-MONDRAGÓN A., Simultaneous dual true random numbers generator, DYNA 83(195), 2016, pp. 93–98.
- [16] LOPEZ LEYVA J.A., ARVIZU MONDRAGÓN A., GARCÍA E., MENDIETA F.J., ALVAREZ GUZMAN E., GALLION P., Detection of phase-diffused weak-coherent-states using an optical Costas loop, Optical Engineering 51(10), 2012, article ID 105002.
- [17] JOUGUET P., KUNZ-JACQUES S., LEVERRIER A., GRANGIER P., DIAMANTI E., Experimental demonstration of continuous-variable quantum key distribution over 80 km of standard telecom fiber, Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 2013.
- [18] Cygnus: State-of-the-art CVQKD module, http://sequrenet.com/datasheets/datasheet_cygnus.pdf, 2016.
- [19] Clavis the most versatile quantum key distribution research platform, http://marketing.idquan- tique.com/acton/attachment/11868/f-00a0/1/-/-/-/-Clavis%20QKD%20Datasheet.pdf, 2016.
- [20] SCARANI V., BECHMANN-PASQUINUCCI H., CERF N., DUŠEK M., LÜTKENHAUS N., PEEV M., The security of practical quantum key distribution, Reviews of Modern Physics 81(3), 2009, pp. 1301–1350.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6d30a71-5ca5-4b17-a4c1-e6116d79d145